def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ images, labels = read_image.inputs(eval_data=eval_data, batch_size=FLAGS.batch_size) return images, labels
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ #if not FLAGS.data_dir: #raise ValueError('Please supply a data_dir') #data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = read_image.inputs( eval_data=eval_data, #data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
def evaluate(): """Run Eval once. Args: saver: Saver. summary_writer: Summary writer. top_k_op: Top K op. summary_op: Summary op. """ with tf.Graph().as_default() as g: # Get images and labels for CIFAR-10. eval_data = FLAGS.eval_data == 'test' images, labels = read_image.inputs(eval_data, FLAGS.eval_batch_size) #这样居然也可以 FLAGS.batch_size = FLAGS.eval_batch_size # Build a Graph that computes the logits predictions from the # inference model. logits = general.inference(images) accuracy = general.accuracy(logits, labels) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, 1) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( general.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g) with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) # Assuming model_checkpoint_path looks something like: # /my-favorite-path/cifar10_train/model.ckpt-0, # extract global_step from it. global_step = ckpt.model_checkpoint_path.split('/')[-1].split( '-')[-1] else: print('No checkpoint file found') return summary_writer.add_graph(sess.graph) # Start the queue runners. coord = tf.train.Coordinator() try: threads = [] for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS): threads.extend( qr.create_threads(sess, coord=coord, daemon=True, start=True)) num_iter = int( math.ceil(FLAGS.num_examples / FLAGS.eval_batch_size)) true_count = 0 # Counts the number of correct predictions. total_sample_count = num_iter * FLAGS.batch_size step = 0 accuracy_sum = 0 while step < num_iter and not coord.should_stop(): predictions = sess.run([top_k_op]) accuracy_sum += sess.run(accuracy) true_count += np.sum(predictions) step += 1 # Compute precision @ 1. precision = true_count / total_sample_count accuracy_avg = accuracy_sum / step print('%s: precision @ 1 = %.4f' % (datetime.now(), precision)) print('%s: accuracy @ 1 = %.4f' % (datetime.now(), accuracy_avg)) summary = tf.Summary() summary.ParseFromString(sess.run(summary_op)) summary.value.add(tag='Precision @ 1', simple_value=precision) summary_writer.add_summary(summary, global_step) except Exception as e: # pylint: disable=broad-except coord.request_stop(e) coord.request_stop() coord.join(threads, stop_grace_period_secs=10)