Beispiel #1
0
def problem_3():
    (A, B) = create_matrix_A_B()

    # B is a song x user matrix, transpose of B is a user x song matrix. Their multiplication gives a song x song matrix with similarity values between songs
    song_similarity_mat = B * B.transpose()

    # Extracting all similarity values
    song_sim_values = [
        val for (row_lbl, col_lbl), val in song_similarity_mat.f.items()
        if row_lbl != col_lbl
    ]

    # Extracting maximum similarity value
    max_song_sim = max(song_sim_values)

    song_sim_list = []

    for row_label in song_similarity_mat.D[0]:
        for col_label in song_similarity_mat.D[1]:
            if row_label != col_label and song_similarity_mat.f.get(
                (row_label, col_label)) == max_song_sim:
                if (row_label, col_label) not in song_sim_list and (
                        col_label, row_label) not in song_sim_list:
                    song_sim_list.append((row_label, col_label))

    print('Songs most similar to each other : ', song_sim_list)
Beispiel #2
0
def problem_1():
    (A, B) = create_matrix_A_B()

    # A is a user x song matrix, B is song x user matrix. A*B creates a user x user matrix which contains similarity values between every pair of users
    user_similarity_mat = A * B

    # Extracing all similarity values excluding diagonal elements
    user_similarity_values = [
        val for (row_label, col_label), val in user_similarity_mat.f.items()
        if row_label != col_label
    ]

    # Extracing maximum similarity value
    user_max_sim = max(user_similarity_values)

    # Extracing minimum similarity value
    user_min_sim = min(user_similarity_values)

    max_sim_list = []

    max_sim_count = 0

    for row_label in user_similarity_mat.D[0]:
        for col_label in user_similarity_mat.D[1]:
            if row_label != col_label and user_similarity_mat.f.get(
                (row_label, col_label)) == user_max_sim:
                if (row_label, col_label) not in max_sim_list and (
                        col_label, row_label) not in max_sim_list:
                    max_sim_list.append((row_label, col_label))
                    max_sim_count = max_sim_count + 1

    print("List of users with most similarity : ")
    print(max_sim_list)

    min_sim_list = []

    min_sim_count = 0

    for row_label in user_similarity_mat.D[0]:
        for col_label in user_similarity_mat.D[1]:
            if row_label != col_label and user_similarity_mat.f.get(
                (row_label, col_label)) == user_min_sim:
                if (row_label, col_label) not in min_sim_list and (
                        col_label, row_label) not in min_sim_list:
                    min_sim_list.append((row_label, col_label))
                    min_sim_count = min_sim_count + 1

    print("List of users with least similarity : ")
    print(min_sim_list)
Beispiel #3
0
def problem_4():
    (A, B) = create_matrix_A_B()

    # F is a user x city matrix
    F = create_matrix_F()

    # Transpose of F is a city x user matrix and A is a user x song matrix. Their multiplication gives the city listening profile matrix, which is a city x song matrix
    city_listening_mat = F.transpose() * A

    max_row_sum = 0
    max_city = ""

    for row_label in city_listening_mat.D[0]:
        row_sum = 0
        for col_label in city_listening_mat.D[1]:
            row_sum = row_sum + city_listening_mat.f.get(
                (row_label, col_label))
        if row_sum > max_row_sum:
            max_row_sum = row_sum
            max_city = row_label

    print("City with most recurrent songs played : ", max_city)

    # Multiplication of city listening profile matrix with its transpose will give city similarity matrix
    city_similarity_mat = city_listening_mat * city_listening_mat.transpose()

    # Extracting all similarity values
    city_sim_values = [
        val for (row_lbl, col_lbl), val in city_similarity_mat.f.items()
        if row_lbl != col_lbl
    ]

    # Extracting the max similarity values
    max_city_sim = max(city_sim_values)

    city_sim_list = []

    for row_label in city_similarity_mat.D[0]:
        for col_label in city_similarity_mat.D[1]:
            if row_label != col_label and city_similarity_mat.f.get(
                (row_label, col_label)) == max_city_sim:
                if (row_label, col_label) not in city_sim_list and (
                        col_label, row_label) not in city_sim_list:
                    city_sim_list.append((row_label, col_label))

    print('Cities most similar to each other are : ', city_sim_list)
Beispiel #4
0
def problem_2():
    (A, B) = create_matrix_A_B()

    # A is a user x song matrix, B is song x user matrix. A*B creates a user x user matrix which contains similarity values between every pair of users
    user_similarity_mat = A * B

    user_id = 'T86YHdD4C9JSc274b1IlMkLuNdz4BQRB50fWWE7hx9g='

    # Extracting all values similarity values corresponding to user 'T86YHdD4C9JSc274b1IlMkLuNdz4BQRB50fWWE7hx9g='
    user_similarity_values = [
        val for (row_label, col_label), val in user_similarity_mat.f.items()
        if ((row_label != col_label) and row_label == user_id)
    ]

    # Extracting max similarity value
    user_max_sim = max(user_similarity_values)
    max_sim_user = []

    for col_label in similarity_mat.D[1]:
        if user_id != col_label and user_similarity_mat.f.get(
            (user_id, col_label)) == user_max_sim:
            max_sim_list.append((row_label, col_label))

    print("Users most similar to each other : ", max_sim_list)
Beispiel #5
0
def problem_5():

    (A, B) = create_matrix_A_B()
    G = create_matrix_G()

    gender_song_sim_mat = G.transpose() * A

    for row_label in gender_song_sim_mat.D[0]:
        row_values = []
        for col_label in gender_song_sim_mat.D[1]:
            row_values.append(gender_song_sim_mat.f.get(
                (row_label, col_label)))
        max_row_value = max(row_values)

        gender = row_label + 's'
        gender_song = ''

        for col_label in gender_song_sim_mat.D[1]:
            if gender_song_sim_mat.f.get(
                (row_label, col_label)) == max_row_value:
                gender_song = col_label
                break

        print('Song : ', gender_song, ' is played most by ', gender)
Beispiel #6
0
def problem_6():
    (A, B) = create_matrix_A_B()
    w = create_vec_w()
    b = create_vec_b()

    print('Fraction Wrong : ', frac_wrong(A, b, w))
Beispiel #7
0
from vec import Vec
from mat import Mat
from matutil import mat2rowdict
from matutil import rowdict2mat
import math

from problems import problem_1
from problems import problem_2
from problems import problem_3
from problems import problem_4
from problems import problem_5
from problems import problem_6
from problems import gradient_descent
from problems import frac_wrong
from problems import loss
from problems import find_grad
from problems import gradient_descent_step

from read_input import create_matrix_A_B
from read_input import create_matrix_F
from read_input import create_matrix_G
from read_input import create_vec_b
from read_input import create_vec_w

import matplotlib.pyplot as plt

(A, B) = create_matrix_A_B()