Beispiel #1
0
def plot(cluster,
         funcs,
         labels,
         filename="fingerprints.pdf",
         plot_title='Scores by Cluster',
         cmap='Paired',
         filter=lambda a: True,
         plot_pop=False,
         run_dir="../run/"):
    assert len(labels) == len(funcs), "must have a label for every func"

    # load in cluster data
    ac = rc.load(cluster)
    clusters = rc.load_clusters(cluster)

    # compress clusters
    # TODO: replace with call to agent.cluster.compress(700)
    clusters = [[i, clust] for i, clust in enumerate(clusters)
                if len(clust) > 700]
    ids, clusters = zip(*clusters)
    num_clusters = len(clusters)

    # build up cluster data
    data = [[
        np.average([func(a) for a in clust if filter(a)]) for clust in clusters
    ] for func in funcs]
    err = [[
        np.std([func(a) for a in clust if filter(a)]) /
        np.sqrt(len([func(a) for a in clust if filter(a)]))
        for clust in clusters
    ] for func in funcs]

    # plot actual bars for each function
    ind = np.arange(num_clusters)
    width = 1.0 / (len(funcs) + 1)
    bars = []
    for offset, datum in enumerate(data):
        b = bar(ind + (offset * width),
                datum,
                width,
                color=cm.Paired(float(offset) / len(funcs)),
                yerr=err[offset],
                capsize=1.5)
        bars.append(b)

    # generate final plot
    title(plot_title, weight='black')
    ylabel('Normalized Value', weight='bold')
    ylim(ymin=0, ymax=1.0)
    xlabel('Cluster', weight='bold')
    xticks(ind + (width * len(funcs) / 2),
           ["%d" % ids[i] for i, clust in enumerate(clusters)])
    legend([b[0] for b in bars], labels, loc='upper left')

    savefig(filename, dpi=200)
def plot(cluster, filename="plot.png", func=lambda a: a.id, 
         plot_title='', cmap='Paired', filter=lambda a: True, 
         draw_legend=False, radius='2.25', sym=None):
    ac = rc.load(cluster)
    clusters = rc.load_clusters(cluster)

    p = get_population()
    pops = [0 for i in range(30000)]
    cluster_pops = [] 
    cluster_pop_max = []
    for clust in range(len(clusters)):
        cluster_pops.append(pops[:])
        cluster_pop_max.append([0,0,-1,0])

    for clust,agents in enumerate(clusters):
        for agent in agents:
            a = Agent(agent)
            for i in range(a.birth, a.death):
                cluster_pops[clust][i] += 1
                if cluster_pop_max[clust][2] == -1:
                    cluster_pop_max[clust][2] = i
                if i > cluster_pop_max[clust][3]:
                    cluster_pop_max[clust][3] = i
                if cluster_pops[clust][i] > cluster_pop_max[clust][0]:
                    cluster_pop_max[clust][0] = cluster_pops[clust][i]
                    cluster_pop_max[clust][1] = i
    
    lines=[]
    for i,clust in enumerate(cluster_pops):
        lines.append(pylab.plot(range(30000),clust, 
                         label=("%d: k=%d" % (i, len(clusters[i]))),
                         color=pylab.cm.Paired(float(i)/len(clusters))))

    if draw_legend:
        pylab.figlegend(lines, ["%d: k=%d" % (i, len(clust))
                                    for i,clust in enumerate(clusters)], 
                        'center right', 
                        ncol=((len(clusters)/35)+1), prop=dict(size=6))
    else:
        print "should not draw!!!"

    title = r"Cluster Population ($\epsilon$ = %s, %d clusters)" % (radius, len(clusters))
    pylab.title(title, weight='black')
    pylab.xlabel("Time", weight='bold')
    pylab.ylabel("Population Size", weight='bold')
    if sym is not None:
        pylab.figtext(0,.954, '(%s)' % sym, size=6, weight='black')

    pylab.savefig(filename, dpi=300)

    print 'cluster, totalPop, start, peak, stop, maxPop'
    for clust,agents in enumerate(clusters):
        print clust, len(agents), cluster_pop_max[clust][2], cluster_pop_max[clust][1], cluster_pop_max[clust][3]+1, cluster_pop_max[clust][0]
def plot(cluster, filename="plot.png", plot_title='', cmap='RdBu_r'):
    ac = rc.load(cluster)
    clusters = rc.load_clusters(cluster)

    p = get_population()[400:4000]
    p = [a for a in p if a.birth != 30000]

    #normalize genomes
    print "normalizing genomes..."
    gs = zscore([a.genome[:] for a in p], axis=1)
    for i, agent in enumerate(p):
        agent.ngenome = gs[i]
        del agent.genome

    print "calculating distances..."
    gene_results = []
    geo_results = []

    pool = Pool()
    for i,agent1 in enumerate(p):
        print agent1.id, "to everything else"
       
        x = [(agent1.ngenome, agent2.ngenome) for agent2 in p[i+1:]]
        r = pool.map(dists_wrapper, x)
        gene_results.extend(r)
 
        y = [(agent1.positions[agent1.birth+1], 
              agent2.positions[agent2.birth+1]) 
                 for agent2 in p[i+1:]]

        r = pool.map(dists_wrapper, y)
        geo_results.extend(r)

        #for agent2 in p[i+1:]:
        #    results.append(dists(agent1, agent2))

        del agent1.ngenome
        del agent1.positions

    xs = geo_results
    ys = gene_results

    print "plotting..."
    hexbin(xs, ys, cmap=cmap, alpha=0.6, edgecolors='none', mincnt=25)
    title(plot_title)
    xlabel('Geographic Distance')
    ylabel('Genetic Distance')
    xlim( (0,142) )
    ylim( (1000,6000) )
    colorbar()
    savefig(filename, dpi=200)
Beispiel #4
0
def plot(cluster, filename="plot.png", plot_title='', cmap='RdBu_r'):
    ac = rc.load(cluster)
    clusters = rc.load_clusters(cluster)

    p = get_population()[400:4000]
    p = [a for a in p if a.birth != 30000]

    #normalize genomes
    print "normalizing genomes..."
    gs = zscore([a.genome[:] for a in p], axis=1)
    for i, agent in enumerate(p):
        agent.ngenome = gs[i]
        del agent.genome

    print "calculating distances..."
    gene_results = []
    geo_results = []

    pool = Pool()
    for i, agent1 in enumerate(p):
        print agent1.id, "to everything else"

        x = [(agent1.ngenome, agent2.ngenome) for agent2 in p[i + 1:]]
        r = pool.map(dists_wrapper, x)
        gene_results.extend(r)

        y = [(agent1.positions[agent1.birth + 1],
              agent2.positions[agent2.birth + 1]) for agent2 in p[i + 1:]]

        r = pool.map(dists_wrapper, y)
        geo_results.extend(r)

        #for agent2 in p[i+1:]:
        #    results.append(dists(agent1, agent2))

        del agent1.ngenome
        del agent1.positions

    xs = geo_results
    ys = gene_results

    print "plotting..."
    hexbin(xs, ys, cmap=cmap, alpha=0.6, edgecolors='none', mincnt=25)
    title(plot_title)
    xlabel('Geographic Distance')
    ylabel('Genetic Distance')
    xlim((0, 142))
    ylim((1000, 6000))
    colorbar()
    savefig(filename, dpi=200)
Beispiel #5
0
def plot(cluster,
         filename="plot-filter.eps",
         funcs=(lambda a: a.id),
         plot_title='Scores by Cluster',
         cmap='Paired',
         filter=lambda a: True,
         labels=('id'),
         plot_pop=False):
    assert len(labels) == len(funcs), "must have a label for every func"
    ac = rc.load(cluster)
    clusters = rc.load_clusters(cluster)
    clusters = [[i, clust] for i, clust in enumerate(clusters)
                if len(clust) > 700]
    ids, clusters = zip(*clusters)
    num_clusters = len(clusters)

    ind = np.arange(num_clusters)
    if plot_pop:
        width = 1.0 / (len(funcs) + 2)
    else:
        width = 1.0 / (len(funcs) + 1)

    data = [[
        np.average([func(a) for a in clust if filter(a)]) for clust in clusters
    ] for func in funcs]
    if plot_pop:
        data.append([len(clust) / 25346.0 for clust in clusters])
        labels.append('population')

    bars = []
    for offset, datum in enumerate(data):
        b = bar(ind + (offset * width),
                datum,
                width,
                color=cm.Paired(float(offset) / len(funcs)))
        bars.append(b)

    ylabel('normalized value')
    title(plot_title)
    ylim(ymin=0)
    xticks(ind + (width * len(funcs) / 2), [
        "%d: k=%d" % (ids[i], len(clust)) for i, clust in enumerate(clusters)
    ],
           fontsize=8)
    legend([b[0] for b in bars], labels, loc='upper left', prop=dict(size=6))

    savefig(filename, dpi=200)
Beispiel #6
0
def plot(cluster, funcs, labels, filename="fingerprints.pdf",
         plot_title='Scores by Cluster', cmap='Paired', filter=lambda a: True,
         plot_pop=False, run_dir="../run/"):
    assert len(labels) == len(funcs), "must have a label for every func"

    # load in cluster data
    ac = rc.load(cluster)
    clusters = rc.load_clusters(cluster)

    # compress clusters
    # TODO: replace with call to agent.cluster.compress(700)
    clusters = [[i, clust] for i,clust in enumerate(clusters) 
                    if len(clust) > 700]
    ids, clusters = zip(*clusters)
    num_clusters = len(clusters)

    # build up cluster data
    data = [[np.average([func(a) for a in clust if filter(a)]) 
                for clust in clusters]
                    for func in funcs]
    err = [[np.std([func(a) for a in clust if filter(a)]) /
            np.sqrt(len([func(a) for a in clust if filter(a)]))
               for clust in clusters]
                   for func in funcs]

    # plot actual bars for each function
    ind = np.arange(num_clusters)
    width = 1.0 / (len(funcs) + 1)
    bars = []
    for offset,datum in enumerate(data):
        b = bar(ind+(offset*width), datum, width,
                color=cm.Paired(float(offset)/len(funcs)),
                yerr=err[offset], capsize=1.5)
        bars.append(b)

    # generate final plot
    title(plot_title, weight='black')
    ylabel('Normalized Value', weight='bold')
    ylim(ymin=0,ymax=1.0)
    xlabel('Cluster', weight='bold')
    xticks(ind + ( width*len(funcs) / 2), 
           ["%d" % ids[i] 
                for i, clust in enumerate(clusters)])
    legend([b[0] for b in bars], labels, loc='upper left') 

    savefig(filename, dpi=200)
def plot(cluster, filename="plot.png", func=lambda a: a.id, 
         plot_title='', cmap='Paired', filter=lambda a: True):
    ac = rc.load(cluster)
    clusters = rc.load_clusters(cluster)

    p = get_population()
    p.sort(key=lambda a:-len(clusters[ac[a.id]]))

    xs = [(a.birth + a.death) / 2 for a in p if filter(a)]
    ys = [func(a) for a in p if filter(a)]
    cs = [ac[a.id] for a in p if filter(a)]

    scatter(xs,ys, cmap=cmap, c=cs, s=10, alpha=0.6, edgecolors='none')
    title(plot_title)
    xlim(0,30000)
    ylim(ymin=0)
    savefig(filename, dpi=200)
Beispiel #8
0
def plot(cluster,
         filename="plot.png",
         func=lambda a: a.id,
         plot_title='',
         cmap='Paired',
         filter=lambda a: True):
    ac = rc.load(cluster)
    clusters = rc.load_clusters(cluster)

    p = get_population()
    p.sort(key=lambda a: -len(clusters[ac[a.id]]))

    xs = [(a.birth + a.death) / 2 for a in p if filter(a)]
    ys = [func(a) for a in p if filter(a)]
    cs = [ac[a.id] for a in p if filter(a)]

    scatter(xs, ys, cmap=cmap, c=cs, s=10, alpha=0.6, edgecolors='none')
    title(plot_title)
    xlim(0, 30000)
    ylim(ymin=0)
    savefig(filename, dpi=200)
def plot(cluster, filename="plot-filter.eps", funcs=(lambda a: a.id),
         plot_title='Scores by Cluster', cmap='Paired', filter=lambda a: True,
         labels=('id'), plot_pop=False):
    assert len(labels) == len(funcs), "must have a label for every func"
    ac = rc.load(cluster)
    clusters = rc.load_clusters(cluster)
    clusters = [[i, clust] for i,clust in enumerate(clusters) 
                    if len(clust) > 700]
    ids, clusters = zip(*clusters)
    num_clusters = len(clusters)

    ind = np.arange(num_clusters)
    if plot_pop:
        width = 1.0 / (len(funcs) + 2)
    else:
        width = 1.0 / (len(funcs) + 1)

    data = [[np.average([func(a) for a in clust if filter(a)]) 
                for clust in clusters]
                    for func in funcs]
    if plot_pop:
        data.append([len(clust) / 25346.0 for clust in clusters])
        labels.append('population')

    bars = []
    for offset,datum in enumerate(data):
        b = bar(ind+(offset*width), datum, width,
                color=cm.Paired(float(offset)/len(funcs)))
        bars.append(b)

    ylabel('normalized value')
    title(plot_title)
    ylim(ymin=0)
    xticks(ind + ( width*len(funcs) / 2), 
           ["%d: k=%d" % (ids[i], len(clust)) 
                for i, clust in enumerate(clusters)],
           fontsize=8)
    legend([b[0] for b in bars], labels, loc='upper left', prop=dict(size=6)) 

    savefig(filename, dpi=200)
#!/usr/bin/python
from agent import *

# Verify argument is a cluster file
import sys
import os.path
assert len(sys.argv) > 1, "Must specify a cluster file!"
assert os.path.isfile(sys.argv[-1]), "Must specify a valid file!"

# load population
pop = get_population()

# load cluster info
import readcluster
cluster = readcluster.load(sys.argv[-1])
n_clusters = len(set(cluster.values()))
print n_clusters, "clusters"

# initialize variables
from collections import defaultdict
f = defaultdict(int)    # fitness
c = defaultdict(int)    # children
g = defaultdict(int)    # grandchildren
df = defaultdict(int)   # delta fitness
dc = defaultdict(int)   # delta children
dg = defaultdict(int)   # delta grandchildren
n = defaultdict(int)    # number


for agent in pop:
    #Only natural born critters
Beispiel #11
0
                cluster_pops[clust][i] += 1

                # set cluster start
                if cluster_pop_max[clust][2] == -1:
                    cluster_pop_max[clust][2] = i

                # set cluster stop
                if i > cluster_pop_max[clust][3]:
                    cluster_pop_max[clust][3] = i

                # set max Population
                if cluster_pops[clust][i] > cluster_pop_max[clust][0]:
                    cluster_pop_max[clust][0] = cluster_pops[clust][i]
                    cluster_pop_max[clust][1] = i

    print 'cluster, totalPop, start, peak, stop, maxPop'
    for clust, agents in enumerate(clusters):
        print clust, len(agents), cluster_pop_max[clust][2], cluster_pop_max[
            clust][1], cluster_pop_max[clust][3] + 1, cluster_pop_max[clust][0]


if __name__ == '__main__':
    import sys

    # get clusters
    cluster_file = sys.argv[-1]
    ac = rc.load(cluster_file)
    clusters = rc.load_clusters(cluster_file)

    print_timeline(clusters)
def plot(cluster,
         filename="plot.png",
         func=lambda a: a.id,
         plot_title='',
         cmap='Paired',
         filter=lambda a: True,
         draw_legend=False,
         radius='2.25',
         sym=None):
    ac = rc.load(cluster)
    clusters = rc.load_clusters(cluster)

    p = get_population()
    pops = [0 for i in range(30000)]
    cluster_pops = []
    cluster_pop_max = []
    for clust in range(len(clusters)):
        cluster_pops.append(pops[:])
        cluster_pop_max.append([0, 0, -1, 0])

    for clust, agents in enumerate(clusters):
        for agent in agents:
            a = Agent(agent)
            for i in range(a.birth, a.death):
                cluster_pops[clust][i] += 1
                if cluster_pop_max[clust][2] == -1:
                    cluster_pop_max[clust][2] = i
                if i > cluster_pop_max[clust][3]:
                    cluster_pop_max[clust][3] = i
                if cluster_pops[clust][i] > cluster_pop_max[clust][0]:
                    cluster_pop_max[clust][0] = cluster_pops[clust][i]
                    cluster_pop_max[clust][1] = i

    lines = []
    for i, clust in enumerate(cluster_pops):
        lines.append(
            pylab.plot(range(30000),
                       clust,
                       label=("%d: k=%d" % (i, len(clusters[i]))),
                       color=pylab.cm.Paired(float(i) / len(clusters))))

    if draw_legend:
        pylab.figlegend(
            lines,
            ["%d: k=%d" % (i, len(clust)) for i, clust in enumerate(clusters)],
            'center right',
            ncol=((len(clusters) / 35) + 1),
            prop=dict(size=6))
    else:
        print "should not draw!!!"

    title = r"Cluster Population ($\epsilon$ = %s, %d clusters)" % (
        radius, len(clusters))
    pylab.title(title, weight='black')
    pylab.xlabel("Time", weight='bold')
    pylab.ylabel("Population Size", weight='bold')
    if sym is not None:
        pylab.figtext(0, .954, '(%s)' % sym, size=6, weight='black')

    pylab.savefig(filename, dpi=300)

    print 'cluster, totalPop, start, peak, stop, maxPop'
    for clust, agents in enumerate(clusters):
        print clust, len(agents), cluster_pop_max[clust][2], cluster_pop_max[
            clust][1], cluster_pop_max[clust][3] + 1, cluster_pop_max[clust][0]
Beispiel #13
0
        for key in keys:
            print fmt % (key, same[key], hybrid[key],
                         fn(same[key],  hybrid[key]))
    else:
        if len(labels) != len(keys):
            raise ValueError("labels and keys do not have same length.")
        for label, key in izip(labels, keys):
            print fmt % (label, same[key], hybrid[key],
                         fn(same[key], hybrid[key]))
    


if __name__ == '__main__':
    import sys
    
    cluster = rc.load(sys.argv[-1])
    n_clusters = len(set(cluster.values()))
    
    #pop = get_population_during_time(25000,29999)
    pop = get_population()
    population = len(pop)
    print n_clusters, "clusters", population, "critters"
    
    intra, inter = load('../run/events/contacts.log', cluster)
    
    data = []
    for i in range(0,30000, 1000):
        same, hybrid = contact_info(pop[:], cluster, start=i, stop=i+1000, 
                            intra=intra, inter=inter)
        data.append((same, hybrid))
Beispiel #14
0
            a = Agent(agent)
            for i in range(a.birth, a.death):
                cluster_pops[clust][i] += 1
                
                # set cluster start
                if cluster_pop_max[clust][2] == -1:
                    cluster_pop_max[clust][2] = i

                # set cluster stop
                if i > cluster_pop_max[clust][3]:
                    cluster_pop_max[clust][3] = i

                # set max Population
                if cluster_pops[clust][i] > cluster_pop_max[clust][0]:
                    cluster_pop_max[clust][0] = cluster_pops[clust][i]
                    cluster_pop_max[clust][1] = i

    print 'cluster, totalPop, start, peak, stop, maxPop'
    for clust,agents in enumerate(clusters):
        print clust, len(agents), cluster_pop_max[clust][2], cluster_pop_max[clust][1], cluster_pop_max[clust][3]+1, cluster_pop_max[clust][0]

if __name__ == '__main__':
    import sys

    # get clusters
    cluster_file = sys.argv[-1]
    ac = rc.load(cluster_file)
    clusters = rc.load_clusters(cluster_file)

    print_timeline(clusters)
from agent import *

if __name__ == '__main__':
    import sys
    import os.path
    assert len(sys.argv) > 1, "Must specify a cluster file!"
    assert os.path.isfile(sys.argv[-1]), "Must specify a valid file!"

    import readcluster
    cluster = readcluster.load(sys.argv[-1])
    n_clusters = len(set(cluster.values()))
    print n_clusters

    p = get_population()

    pops = [[0 for i in range(n_clusters)] for i in range(30000)]

    for agent in p:
        for step in range(agent.birth, agent.death):
            pops[step][cluster[agent.id]] += 1

    for step, ps in enumerate(pops):
        print step,
        for cluster in ps:
            print cluster,
        print step
Beispiel #16
0
    if labels is None:
        for key in keys:
            print fmt % (key, same[key], hybrid[key], fn(
                same[key], hybrid[key]))
    else:
        if len(labels) != len(keys):
            raise ValueError("labels and keys do not have same length.")
        for label, key in izip(labels, keys):
            print fmt % (label, same[key], hybrid[key],
                         fn(same[key], hybrid[key]))


if __name__ == '__main__':
    import sys

    cluster = rc.load(sys.argv[-1])
    n_clusters = len(set(cluster.values()))

    #pop = get_population_during_time(25000,29999)
    pop = get_population()
    population = len(pop)
    print n_clusters, "clusters", population, "critters"

    intra, inter = load('../run/events/contacts.log', cluster)

    data = []
    for i in range(0, 30000, 1000):
        same, hybrid = contact_info(pop[:],
                                    cluster,
                                    start=i,
                                    stop=i + 1000,