print 'batch_size_train', batch_size_train print 'batch_size_test', batch_size_test print 'lambda_r:', lambda_r print 'vali_test', vali_test print 'epoch', epoch print '''*************************main****************************''' '''*************************main****************************''' for i in range(1): # dataset list dataset_list = ['', '_Women', '_Men', '_CLothes', '_Shoes', '_Jewelry'] # load data [train_data, train_data_aux, validate_data, test_data, P, Q] = readdata(dataset_list[dataset]) # load feature [E, F] = get_feature(dataset) '''for i in range(len(E)): E[i] = E[i] / math.sqrt(mat(E[i]) * mat(E[i]).T) for i in range(len(F)): F[i] = F[i] / math.sqrt(mat(F[i]) * mat(F[i]).T)''' E = E[:, 0:K1] F = F[:, 0:K2] Fc = get_feature_cnn(dataset_list[dataset]) Kc = len(Fc[0]) # select validate or test dataset if vali_test == 0: Test = validate_data
#This assumes that the input data is of length 4 #my packages import readdata #other packages import numpy as np import tensorflow as tf #Get Data trainx, trainy = readdata.readdata(999) testx, testy = readdata.readdata(100) numtrain = len(trainx) numtest = len(testx) #hyperparameters learning_rate = 0.5 epochs = 30 #placeholders X = tf.placeholder("float32") Y = tf.placeholder("float32") #model weights #tf.variables are trainable by default W = tf.Variable(np.array(np.random.rand(1, 4), dtype='float32'), name="weight") #pred = tf.reduce_sum(tf.multiply(X, W)) pred = tf.matmul(W, X)
import numpy as np # importing the database import readdata df = readdata.readdata('database.sqlite') print(df.head()) #Shuffle the rows of df so we get a distributed sample when we display top few rows df = df.reindex(np.random.permutation(df.index)) # Defining the X anf y parameters X = df.iloc[:,1:] # 'other than overall rating, i.e. column 1' y = df.iloc[:,0] # Need to predict 'Overall rating' # Identifying the unique values for preferred_foot colomns print("Unique values in preferred_foot feature are: ", end=" ") print(df.preferred_foot.unique()) print("Lets apply one Hot encoding to preferred_foot feature") # Applying One hot encoding on only catagorical columns, i.e. preferred_foot from sklearn.preprocessing import LabelEncoder label_encoder = LabelEncoder() X.preferred_foot = label_encoder.fit_transform(X.preferred_foot) # Splitting the train and test data from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.10,random_state=0) # Find the most significant features using backward elemination print('-'*50) import backwardEle
#my packages import readdata #other packages import numpy as np import tensorflow as tf import pickle #######change lbl to a list of vectors, not integers########### #Get Data trainimg,trainlbl=readdata.readdata('train') testimg,testlbl=readdata.readdata('test') xshape,yshape,dummy = np.shape(trainimg[0]) numtrain = len(trainimg) numtest = len(testimg) #hyperparameters learning_rate = 0.0001#3e-3 #tf documentation says default = 0.001 beta1=0.94 #0.9 beta2=0.999 #0.999 epsilon=1e-8 #1e-8 dropout_rate = 0.80