def __init__(self, models_dir, fold_name, writer=None, hyper=None): self._graph = tf.Graph() with self._graph.as_default(): reader = Reader(fold_name) with tf.device('/gpu:1'): self._input = reader.inputs(Trainer.BATCH_SIZE, is_train=True) self._network = Network(self._input['images'], is_train=True, hyper=hyper) self._cross_entropy_losses = self._network.cross_entropy_losses( self._input['labels']) self._total_loss = self._network.total_loss( self._input['labels']) self._lr_placeholder = tf.placeholder(tf.float32) self._train = self._train_op() self._all_summaries = tf.merge_all_summaries() self.models_dir = models_dir print('Trainer model folder: %s' % self.models_dir) if not tf.gfile.Exists(self.models_dir): tf.gfile.MakeDirs(self.models_dir) self.writer = writer if (self.writer): self.writer.write_graph(self._graph)
def inputs(eval_data): if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'Data') images, labels = reader.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
def __init__(self, models_dir, fold_name, writer=None, hyper=None): self._graph = tf.Graph() with self._graph.as_default(): reader = Reader(fold_name) self.fold_size = reader.fold_size with tf.device('/gpu:1'): self._input = reader.inputs(Tester.BATCH_SIZE, is_train=False) self._network = Network(self._input['images'], is_train=False, hyper=hyper) self._probs = self._network.probs() self._cross_entropy_losses = self._network.cross_entropy_losses(self._input['labels']) self._all_summaries = tf.merge_all_summaries() self.models_dir = models_dir print('Tester model folder: %s' %self.models_dir) assert os.path.exists(self.models_dir) self.writer = writer
def __init__(self, models_dir, fold_name, writer=None, hyper=None): self._graph = tf.Graph() with self._graph.as_default(): reader = Reader(fold_name) self.fold_size = reader.fold_size with tf.device('/gpu:1'): images, self._labels, scores, self._filenames = reader.inputs(Tester.BATCH_SIZE, is_train=False) self._network = Network(images, is_train=False, hyper=hyper, features=scores) self._probs = self._network.probs() self._loss = self._network.loss(self._labels) self._all_summaries = tf.merge_all_summaries() self.models_dir = models_dir print('Tester model folder: %s' %self.models_dir) assert os.path.exists(self.models_dir) self.writer = writer
def __init__(self, models_dir, fold_name, writer=None, hyper=None): self._graph = tf.Graph() with self._graph.as_default(): reader = Reader(fold_name) with tf.device('/gpu:1'): images, labels, scores, _ = reader.inputs(Trainer.BATCH_SIZE, is_train=True) self._network = Network(images, is_train=True, hyper=hyper, features=scores) self._loss = self._network.loss(labels) self._lr_placeholder = tf.placeholder(tf.float32) self._train = self._train_op() self._all_summaries = tf.merge_all_summaries() self.models_dir = models_dir print('Trainer model folder: %s' %self.models_dir) if not tf.gfile.Exists(self.models_dir): tf.gfile.MakeDirs(self.models_dir) self.writer = writer if (self.writer): self.writer.write_graph(self._graph)