copy_dst_csv = CSV_DIR + FILE_ID + '.csv' copy_dst_pkl = PKL_DIR + FILE_ID + '.pkl' if os.path.exists(SAVE_DIR): remove_dir(SAVE_DIR) if os.path.exists(copy_dst_csv): remove_file(copy_dst_csv) if os.path.exists(copy_dst_pkl): remove_file(copy_dst_pkl) pkl_files = glob.glob(PKL_DIR + QUERY_FILE_ID + '.pkl') print(pkl_files) if len(pkl_files) == 0: print("No such pkl files") sys.exit() best_file_id = os.path.basename(pkl_files[0])[:-4] # -.pkl' best_performance = np.sum(read_pkl(pkl_files[0])['te_te_precision_at_k']) for pkl_idx in range(len(pkl_files)): file_id = os.path.basename(pkl_files[pkl_idx])[:-4] # -.pkl' performance = np.sum( read_pkl(pkl_files[pkl_idx])['te_te_precision_at_k']) print("performance : {} from {}".format(performance, file_id)) if performance > best_performance: best_performance = performance best_file_id = file_id print("best performance : {} from {}".format(best_performance, best_file_id)) copy_file(CSV_DIR + best_file_id + '.csv', copy_dst_csv) copy_file(PKL_DIR + best_file_id + '.pkl', copy_dst_pkl) copy_dir(RESULT_DIR + 'metric/save/' + best_file_id, SAVE_DIR) # load data
sys.path.append('../configs') from sklearn.model_selection import train_test_split # ../utils from reader import read_pkl from writer import write_npy, create_muldir from dataset_op import label_count # ../configs from path import CIFAR100PATH, CIFARPROCESSED from info import CIFARNCLASS import numpy as np import pickle train = read_pkl(CIFAR100PATH + 'train', encoding='bytes') test = read_pkl(CIFAR100PATH + 'test', encoding='bytes') train_image = train[b'data'].astype(np.float32) / 255 test_image = test[b'data'].astype(np.float32) / 255 pixel_mean = np.mean(train_image, axis=0) # use global pixel mean only for train data train_image -= pixel_mean test_image -= pixel_mean train_image = np.transpose(np.reshape(train_image, [-1, 3, 32, 32]), [0, 2, 3, 1]) train_label = np.array(train[b'fine_labels'])
# ../configs from path import IMAGENET32PATH, IMAGENET32PROCESSED # ../utils from reader import read_pkl from writer import write_npy, create_muldir from sklearn.model_selection import train_test_split import numpy as np train_img = list() train_label = list() image_mean = None for idx in range(1, 10): content = read_pkl(IMAGENET32PATH + 'train_data_batch_%d' % idx) if image_mean is None: image_mean = content['mean'] else: assert np.sum(image_mean) == np.sum( content['mean']), "pixel_mean value should be same" nimg = len(content['data']) nlabel = len(content['labels']) assert nimg == nlabel, "image and label should be same " train_img.append(content['data']) train_label.append(content['labels']) train_img = np.concatenate(train_img, axis=0) train_label = np.concatenate(train_label, axis=0) - 1