def get_data(train_or_test, batch_size): is_train = train_or_test == 'train' filename_list = cfg.train_list if is_train else cfg.test_list ds = Data(filename_list, shuffle=is_train, flip=is_train, random_crop=is_train, test_set=not is_train) sample_num = ds.size() if is_train: augmentors = [ imgaug.RandomOrderAug([ imgaug.BrightnessScale((0.6, 1.4), clip=False), imgaug.Contrast((0.6, 1.4), clip=False), imgaug.Saturation(0.4, rgb=False), imgaug.Lighting( 0.1, eigval=np.asarray([0.2175, 0.0188, 0.0045][::-1]) * 255.0, eigvec=np.array([[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]], dtype='float32')[::-1, ::-1]) ]), ] else: augmentors = [] # ds = AugmentImageComponent(ds, augmentors) ds = BatchData(ds, batch_size, remainder=not is_train) if is_train: ds = PrefetchDataZMQ(ds, min(6, multiprocessing.cpu_count())) return ds, sample_num
def get_data(train_or_test, batch_size): is_train = train_or_test == 'train' ds = Data(train_or_test) sample_num = ds.size() if is_train: augmentors = [ imgaug.RandomOrderAug([ imgaug.Brightness(30, clip=False), imgaug.Contrast((0.8, 1.2), clip=False), imgaug.Saturation(0.4), imgaug.Lighting(0.1, eigval=[0.2175, 0.0188, 0.0045][::-1], eigvec=np.array([[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]], dtype='float32')[::-1, ::-1]) ]), # imgaug.Clip(), imgaug.ToUint8() ] else: augmentors = [imgaug.ToUint8()] ds = AugmentImageComponent(ds, augmentors) if is_train: ds = PrefetchDataZMQ(ds, min(8, multiprocessing.cpu_count())) ds = BatchData(ds, batch_size, remainder=not is_train) return ds, sample_num
def get_data(train_or_test, batch_size): is_train = train_or_test == 'train' filename_list = cfg.train_list if is_train else cfg.test_list ds = Data(filename_list, rotate=False, flip_ver=is_train, flip_horiz=is_train, shuffle=is_train) sample_num = ds.size() augmentors = [ # random rotate and flip should be applied to both input and label, thus cannot be added here imgaug.SaltPepperNoise(white_prob=0.01, black_prob=0.01), imgaug.ToUint8() ] ds = AugmentImageComponent(ds, augmentors) if is_train: ds = PrefetchDataZMQ(ds, min(8, multiprocessing.cpu_count())) ds = BatchData(ds, batch_size, remainder = not is_train) return ds, sample_num