Beispiel #1
0
def test_group_lasso_separable():
    """
    This test verifies that the specification of a separable
    penalty yields the same results as having two linear_atoms
    with selector matrices. The penalty here is a group_lasso, i.e. l2
    penalty.
    """

    X = np.random.standard_normal((100,20))
    Y = np.random.standard_normal((100,)) + np.dot(X, np.random.standard_normal(20))

    penalty1 = rr.l2norm(10, lagrange=.2)
    penalty2 = rr.l2norm(10, lagrange=.2)
    penalty = rr.separable((20,), [penalty1, penalty2], [slice(0,10), slice(10,20)])

    # solve using separable
    
    loss = rr.quadratic.affine(X, -Y, coef=0.5)
    problem = rr.separable_problem.fromatom(penalty, loss)
    solver = rr.FISTA(problem)
    solver.fit(min_its=200, tol=1.0e-12)
    coefs = solver.composite.coefs

    # solve using the selectors

    penalty_s = [rr.linear_atom(p, rr.selector(g, (20,))) for p, g in
                 zip(penalty.atoms, penalty.groups)]
    problem_s = rr.container(loss, *penalty_s)
    solver_s = rr.FISTA(problem_s)
    solver_s.fit(min_its=200, tol=1.0e-12)
    coefs_s = solver_s.composite.coefs

    np.testing.assert_almost_equal(coefs, coefs_s)
Beispiel #2
0
def test_group_lasso_separable():
    """
    This test verifies that the specification of a separable
    penalty yields the same results as having two linear_atoms
    with selector matrices. The penalty here is a group_lasso, i.e. l2
    penalty.
    """

    X = np.random.standard_normal((100,20))
    Y = np.random.standard_normal((100,)) + np.dot(X, np.random.standard_normal(20))

    penalty1 = rr.l2norm(10, lagrange=.2)
    penalty2 = rr.l2norm(10, lagrange=.2)
    penalty = rr.separable((20,), [penalty1, penalty2], [slice(0,10), slice(10,20)])

    # solve using separable
    
    loss = rr.quadratic_loss.affine(X, -Y, coef=0.5)
    problem = rr.separable_problem.fromatom(penalty, loss)
    solver = rr.FISTA(problem)
    solver.fit(min_its=200, tol=1.0e-12)
    coefs = solver.composite.coefs

    # solve using the selectors

    penalty_s = [rr.linear_atom(p, rr.selector(g, (20,))) for p, g in
                 zip(penalty.atoms, penalty.groups)]
    problem_s = rr.container(loss, *penalty_s)
    solver_s = rr.FISTA(problem_s)
    solver_s.fit(min_its=200, tol=1.0e-12)
    coefs_s = solver_s.composite.coefs

    np.testing.assert_almost_equal(coefs, coefs_s)
Beispiel #3
0
def test_lasso_separable():
    """
    This test verifies that the specification of a separable
    penalty yields the same results as having two linear_atoms
    with selector matrices. The penalty here is a lasso, i.e. l1
    penalty.
    """

    X = np.random.standard_normal((100,20))
    Y = np.random.standard_normal((100,)) + np.dot(X, np.random.standard_normal(20))

    penalty1 = rr.l1norm(10, lagrange=1.2)
    penalty2 = rr.l1norm(10, lagrange=1.2)
    penalty = rr.separable((20,), [penalty1, penalty2], [slice(0,10), slice(10,20)], test_for_overlap=True)

    # ensure code is tested

    print(penalty1.latexify())

    print(penalty.latexify())
    print(penalty.conjugate)
    print(penalty.dual)
    print(penalty.seminorm(np.ones(penalty.shape)))
    print(penalty.constraint(np.ones(penalty.shape), bound=2.))

    pencopy = copy(penalty)
    pencopy.set_quadratic(rr.identity_quadratic(1,0,0,0))
    pencopy.conjugate

    # solve using separable
    
    loss = rr.quadratic.affine(X, -Y, coef=0.5)
    problem = rr.separable_problem.fromatom(penalty, loss)
    solver = rr.FISTA(problem)
    solver.fit(min_its=200, tol=1.0e-12)
    coefs = solver.composite.coefs

    # solve using the usual composite

    penalty_all = rr.l1norm(20, lagrange=1.2)
    problem_all = rr.container(loss, penalty_all)
    solver_all = rr.FISTA(problem_all)
    solver_all.fit(min_its=100, tol=1.0e-12)

    coefs_all = solver_all.composite.coefs

    # solve using the selectors

    penalty_s = [rr.linear_atom(p, rr.selector(g, (20,))) for p, g in
                 zip(penalty.atoms, penalty.groups)]
    problem_s = rr.container(loss, *penalty_s)
    solver_s = rr.FISTA(problem_s)
    solver_s.fit(min_its=500, tol=1.0e-12)
    coefs_s = solver_s.composite.coefs

    np.testing.assert_almost_equal(coefs, coefs_all)
    np.testing.assert_almost_equal(coefs, coefs_s)
Beispiel #4
0
def test_lasso_separable():
    """
    This test verifies that the specification of a separable
    penalty yields the same results as having two linear_atoms
    with selector matrices. The penalty here is a lasso, i.e. l1
    penalty.
    """

    X = np.random.standard_normal((100,20))
    Y = np.random.standard_normal((100,)) + np.dot(X, np.random.standard_normal(20))

    penalty1 = rr.l1norm(10, lagrange=1.2)
    penalty2 = rr.l1norm(10, lagrange=1.2)
    penalty = rr.separable((20,), [penalty1, penalty2], [slice(0,10), slice(10,20)], test_for_overlap=True)

    # ensure code is tested

    print(penalty1.latexify())

    print(penalty.latexify())
    print(penalty.conjugate)
    print(penalty.dual)
    print(penalty.seminorm(np.ones(penalty.shape)))
    print(penalty.constraint(np.ones(penalty.shape), bound=2.))

    pencopy = copy(penalty)
    pencopy.set_quadratic(rr.identity_quadratic(1,0,0,0))
    pencopy.conjugate

    # solve using separable
    
    loss = rr.quadratic_loss.affine(X, -Y, coef=0.5)
    problem = rr.separable_problem.fromatom(penalty, loss)
    solver = rr.FISTA(problem)
    solver.fit(min_its=200, tol=1.0e-12)
    coefs = solver.composite.coefs

    # solve using the usual composite

    penalty_all = rr.l1norm(20, lagrange=1.2)
    problem_all = rr.container(loss, penalty_all)
    solver_all = rr.FISTA(problem_all)
    solver_all.fit(min_its=100, tol=1.0e-12)

    coefs_all = solver_all.composite.coefs

    # solve using the selectors

    penalty_s = [rr.linear_atom(p, rr.selector(g, (20,))) for p, g in
                 zip(penalty.atoms, penalty.groups)]
    problem_s = rr.container(loss, *penalty_s)
    solver_s = rr.FISTA(problem_s)
    solver_s.fit(min_its=500, tol=1.0e-12)
    coefs_s = solver_s.composite.coefs

    np.testing.assert_almost_equal(coefs, coefs_all)
    np.testing.assert_almost_equal(coefs, coefs_s)
Beispiel #5
0
np.random.seed(400)

N = 1000
P = 200

Y = 2 * np.random.binomial(1, 0.5, size=(N, )) - 1.
X = np.random.standard_normal((N, P))
X[Y == 1] += np.array([30, -20] + (P - 2) * [0])[np.newaxis, :]
X -= X.mean(0)[np.newaxis, :]

X_1 = np.hstack([X, np.ones((N, 1))])
transform = rr.affine_transform(-Y[:, np.newaxis] * X_1, np.ones(N))
C = 0.2
hinge = rr.positive_part(N, lagrange=C)
hinge_loss = rr.linear_atom(hinge, transform)
epsilon = 0.04
smoothed_hinge_loss = rr.smoothed_atom(hinge_loss, epsilon=epsilon)

s = rr.selector(slice(0, P), (P + 1, ))
sparsity = rr.l1norm.linear(s, lagrange=3.)
quadratic = rr.quadratic.linear(s, coef=0.5)

from regreg.affine import power_L
ltransform = rr.linear_transform(X_1)
singular_value_sq = power_L(X_1)
# the other smooth piece is a quadratic with identity
# for quadratic form, so its lipschitz constant is 1

lipschitz = 1.05 * singular_value_sq / epsilon + 1.1
Beispiel #6
0
np.random.seed(400)

N = 500
P = 2

Y = 2 * np.random.binomial(1, 0.5, size=(N,)) - 1.
X = np.random.standard_normal((N,P))
X[Y==1] += np.array([3,-2])[np.newaxis,:]

X_1 = np.hstack([X, np.ones((N,1))])
X_1_signs = -Y[:,np.newaxis] * X_1
transform = rr.affine_transform(X_1_signs, np.ones(N))
C = 0.2
hinge = rr.positive_part(N, lagrange=C)
hinge_loss = rr.linear_atom(hinge, transform)

quadratic = rr.quadratic.linear(rr.selector(slice(0,P), (P+1,)), coef=0.5)
problem = rr.container(quadratic, hinge_loss)
solver = rr.FISTA(problem)
solver.fit()

import pylab
pylab.clf()
pylab.scatter(X[Y==1,0],X[Y==1,1], facecolor='red')
pylab.scatter(X[Y==-1,0],X[Y==-1,1], facecolor='blue')

fits = np.dot(X_1, problem.coefs)
labels = 2 * (fits > 0) - 1

pointX = [X[:,0].min(), X[:,0].max()]