Beispiel #1
0
def x86_arpl(ctx, i):

    dest_seg = operand.get(ctx, i, 0)
    src_seg = operand.get(ctx, i, 1)

    dest_rpl = ctx.tmp(16)
    src_rpl = ctx.tmp(16)
    tmp0 = ctx.tmp(32)
    tmp1 = ctx.tmp(8)
    result_seg = ctx.tmp(16)
    tmp2 = ctx.tmp(16)

    ctx.emit(  lshr_ (dest_seg, imm(14, 8), dest_rpl))
    ctx.emit(  lshr_ (src_seg, imm(14, 8), src_rpl))

    ctx.emit(  sub_  (dest_seg, src_seg, tmp0))
    ctx.emit(  and_  (tmp0, imm(sign_bit(32), 32), tmp0))
    ctx.emit(  bisz_ (tmp0, tmp1))
    ctx.emit(  jcc_  ('check_passed'))
    ctx.emit(  str_  (imm(1, 8), r('zf', 8)))
    ctx.emit(  and_  (dest_seg, imm(0b0011111111111111, 16), result_seg))
    ctx.emit(  and_  (src_seg, imm(0b1100000000000000, 16), tmp2))
    ctx.emit(  or_   (dest_seg, tmp2, dest_seg))

    operand.set(ctx, i, 0, result_seg)

    ctx.emit(  jcc_  (imm(1, 8), 'done'))

    ctx.emit('check_passed')
    ctx.emit(  str_  (imm(0, 8), r('zf', 8)))

    ctx.emit('done')
    ctx.emit(  nop_())
Beispiel #2
0
def x86_pminu(ctx, i, size):
    a_id, b_id, dst_id = vex_opnds(i)

    a = operand.get(ctx, i, a_id)
    b = operand.get(ctx, i, b_id)

    a_parts = unpack(ctx, a, size)
    b_parts = unpack(ctx, b, size)

    tmp0 = ctx.tmp(size * 2)
    tmp1 = ctx.tmp(size * 2)

    dst_parts = []
    for a_part, b_part in zip(a_parts, b_parts):
        dst_part = ctx.tmp(size)

        ctx.emit(  sub_  (a_part, b_part, tmp0))
        ctx.emit(  and_  (tmp0, imm(sign_bit(size * 2), size * 2), tmp0))
        ctx.emit(  bisz_ (tmp0, tmp1))
        ctx.emit(  mul_  (b_part, tmp1, tmp0))
        ctx.emit(  xor_  (tmp1, imm(1, size * 2), tmp1))
        ctx.emit(  mul_  (a_part, tmp1, tmp1))
        ctx.emit(  add_  (tmp0, tmp1, tmp0))
        ctx.emit(  str_  (tmp0, dst_part))

        dst_parts.append(dst_part)

    value = pack(ctx, dst_parts)

    operand.set(ctx, i, dst_id, value)
Beispiel #3
0
def x86_bextr(ctx, i):
    a = operand.get(ctx, i, 1)
    b = operand.get(ctx, i, 2)

    start = ctx.tmp(8)
    length = ctx.tmp(8)
    mask = ctx.tmp(a.size)
    tmp0 = ctx.tmp(8)
    result = ctx.tmp(a.size)

    ctx.emit(  str_  (b, start))
    ctx.emit(  lshr_ (b, imm(8, 8), length))
    # we are masking off [11111[start + length , start]111111]
    ctx.emit(  sub_  (imm(a.size, a.size), length, tmp0))
    ctx.emit(  lshr_ (imm(mask(a.size), a.size), tmp0, mask))
    #                    [[start + length, start]111111]
    ctx.emit(  add_  (tmp0, start, tmp0))
    ctx.emit(  lshl_ (mask, tmp0, mask))
    #                    [000000000000[start + length, start]]
    ctx.emit(  lshr_ (mask, start, mask))
    # we have our mask   [00000[start + length , start]000000]
    ctx.emit(  and_  (a, mask, result))
    ctx.emit(  lshr_ (result, start, result))

    set_zf(ctx, result)

    ctx.emit(  str_  (imm(0, 8), r('cf', 8)))
    ctx.emit(  undef_(r('af', 8)))
    ctx.emit(  undef_(r('sf', 8)))
    ctx.emit(  undef_(r('pf', 8)))

    operand.set(ctx, i, 0, result)
Beispiel #4
0
def x86_shrd(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    if len(i.operands) == 2:
        c = ctx.counter
    else:
        c = operand.get(ctx, i, 2)

    size = a.size
    max_shift = size - 1

    tmp0 = ctx.tmp(size)
    tmp1 = ctx.tmp(size * 2)
    result = ctx.tmp(size)

    # the shift amount is truncated at word_size - 1
    ctx.emit(  and_  (c, imm(max_shift, size), tmp0))

    # make a register double the size of the operands containing b a
    ctx.emit(  str_  (b, tmp1))
    ctx.emit(  lshl_ (tmp1, imm(size // 8, 8), tmp1))
    ctx.emit(  or_   (tmp1, a, tmp1))

    # now shift right by the desired amount
    ctx.emit(  lshr_ (tmp1, tmp0, tmp1))

    # and truncate into result
    ctx.emit(  str_  (tmp1, result))

    # TODO: flags properly

    _shift_set_flags(ctx, result)

    operand.set(ctx, i, 0, result)
Beispiel #5
0
def x86_movq(ctx, i):
    value = None

    dst = operand.get(ctx, i, 0)
    value = operand.get(ctx, i, 1)

    operand.set(ctx, i, 0, value, clear=True, sign_extend=False)
Beispiel #6
0
def x86_imul(ctx, i):
    if len(i.operands) == 1:
        # single operand form
        ctx.emit(  unkn_())

    elif len(i.operands) == 2:
        # double operand form
        a = operand.get(ctx, i, 0)
        b = operand.get(ctx, i, 1)

        result = ctx.tmp(a.size * 2)

        ctx.emit(  mul_  (a, b, result))

        operand.set(ctx, i, 0, result)

        _imul_set_flags(ctx, result)

    else:
        # triple operand form
        a = operand.get(ctx, i, 1)
        b = operand.get(ctx, i, 2)

        if b.size < a.size:
            prev_b = b
            b = ctx.tmp(a.size)
            ctx.emit(  sex_  (prev_b, b))

        result = ctx.tmp(a.size * 2)

        ctx.emit(  mul_  (a, b, result))

        operand.set(ctx, i, 0, result)

        _imul_set_flags(ctx, result)
Beispiel #7
0
def x86_pshufd(ctx, i):
    src = operand.get(ctx, i, 1)
    order = operand.get(ctx, i, 2)

    value = imm(0, 128)

    for j in range(0, 4):

        prev_order = order
        order = ctx.tmp(8)
        prev_value = value
        value = ctx.tmp(128)

        tmp0 = ctx.tmp(128)
        tmp1 = ctx.tmp(8)
        tmp2 = ctx.tmp(32)
        tmp3 = ctx.tmp(128)
        tmp4 = ctx.tmp(32)
        tmp5 = ctx.tmp(128)
        tmp6 = ctx.tmp(128)

        ctx.emit(  lshr_ (prev_order, imm(2, 8), order))
        ctx.emit(  and_  (prev_order, imm(0b00000011, 8), tmp1))
        ctx.emit(  mul_  (tmp1, imm(32, 32), tmp2))
        ctx.emit(  lshr_ (src, tmp2, tmp3))
        ctx.emit(  str_  (tmp3, tmp4))
        ctx.emit(  str_  (tmp4, tmp5))
        ctx.emit(  lshl_ (tmp5, imm(j * 32, 8), tmp6))
        ctx.emit(  add_  (tmp6, prev_value, value))

    operand.set(ctx, i, 0, value)
Beispiel #8
0
def x86_cmpxchg(ctx, i):
    a = ctx.accumulator
    b = operand.get(ctx, i, 0)
    c = operand.get(ctx, i, 1)

    if b.size != a.size:
        prev_a = a
        a = ctx.tmp(b.size)
        ctx.emit(  str_  (prev_a, a))

    tmp0 = ctx.tmp(8)

    ctx.emit(  equ_  (a, b, tmp0))
    ctx.emit(  jcc_  (tmp0, 'equal'))

    ctx.emit('not-equal')
    ctx.emit(  str_  (c, ctx.accumulator))
    ctx.emit(  str_  (imm(0, 8), r('zf', 8)))
    ctx.emit(  jcc_  (imm(1, 8), 'done'))

    ctx.emit('equal')
    operand.set(ctx, i, 0, c)
    ctx.emit(  str_  (imm(1, 8), r('zf', 8)))

    ctx.emit('done')
    ctx.emit(  nop_())
Beispiel #9
0
def x86_movq(ctx, i):
    value = None

    dst = operand.get(ctx, i, 0)
    value = operand.get(ctx, i, 1)

    operand.set(ctx, i, 0, value, clear=True, sign_extend=False)
Beispiel #10
0
def x86_bswap(ctx, i):
    a = operand.get(ctx, i, 0)

    bytes = unpack(ctx, a, 8)
    bytes.reverse()
    value = pack(ctx, bytes)

    operand.set(ctx, i, 0, value)
Beispiel #11
0
def x86_bswap(ctx, i):
    a = operand.get(ctx, i, 0)

    bytes = unpack(ctx, a, 8)
    bytes.reverse()
    value = pack(ctx, bytes)

    operand.set(ctx, i, 0, value)
Beispiel #12
0
def x86_pcmpgt(ctx, i, size):
    a_id, b_id, dst_id = vex_opnds(i)

    a = operand.get(ctx, i, a_id)
    b = operand.get(ctx, i, b_id)

    a_parts = unpack(ctx, a, size)
    b_parts = unpack(ctx, b, size)

    a_sign = ctx.tmp(size)
    a_abs = ctx.tmp(size)
    b_sign = ctx.tmp(size)
    b_abs = ctx.tmp(size)

    tmp0 = ctx.tmp(size * 2)
    a_abs_lt_b_abs = ctx.tmp(8)
    tmp1 = ctx.tmp(size)
    a_b_same_sign = ctx.tmp(8)
    a_neg = ctx.tmp(8)
    b_nonneg = ctx.tmp(8)
    a_neg_and_b_nonneg = ctx.tmp(8)
    cond = ctx.tmp(8)

    dst_parts = []
    for a_part, b_part in zip(a_parts, b_parts):
        dst_part = ctx.tmp(size)

        ctx.emit(  and_  (a_part, imm(sign_bit(size), size), a_sign))
        ctx.emit(  and_  (a_part, imm(~sign_bit(size), size), a_abs))
        ctx.emit(  and_  (b_part, imm(sign_bit(size), size), b_sign))
        ctx.emit(  and_  (b_part, imm(~sign_bit(size), size), b_abs))

        # a < b <==> (|a| < |b| and sign(a) == sign(b)) or (a < 0 and b >= 0)

        # |a| < |b|
        ctx.emit(  sub_  (a_abs, b_abs, tmp0))
        ctx.emit(  and_  (tmp0, imm(sign_bit(size * 2), size * 2), tmp0))
        ctx.emit(  bisz_ (tmp0, a_abs_lt_b_abs))

        # sign(a) == sign(b)
        ctx.emit(  xor_  (a_sign, b_sign, tmp1))
        ctx.emit(  bisz_ (tmp1, a_b_same_sign))

        # a < 0 and b >= 0
        ctx.emit(  bisnz_(a_sign, a_neg))
        ctx.emit(  bisz_ (b_sign, b_nonneg))
        ctx.emit(  and_  (a_neg, b_nonneg, a_neg_and_b_nonneg))

        ctx.emit(  and_  (a_abs_lt_b_abs, a_b_same_sign, cond))
        ctx.emit(  or_   (cond, a_neg_and_b_nonneg, cond))
        ctx.emit(  mul_  (cond, imm(mask(size), size), dst_part))

        dst_parts.append(dst_part)


    value = pack(ctx, dst_parts)

    operand.set(ctx, i, dst_id, value)
Beispiel #13
0
def x86_rol(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    max_shift = a.size-1

    size = a.size
    tmp0 = ctx.tmp(size)
    tmp1 = ctx.tmp(8)
    tmp2 = ctx.tmp(size * 2)
    tmp3 = ctx.tmp(size * 2)
    tmp4 = ctx.tmp(size)
    tmp5 = ctx.tmp(size * 2)
    tmp6 = ctx.tmp(size * 2)
    tmp7 = ctx.tmp(size)
    tmp8 = ctx.tmp(size)
    result = ctx.tmp(size)

    # the rotate amount is truncated at word_size - 1
    ctx.emit(  and_  (b, imm(max_shift, size), tmp0))

    # zero rotate doesn't affect flags
    ctx.emit(  bisz_ (tmp0, tmp1))
    ctx.emit(  jcc_  (tmp1, 'zero_rotate'))

    # zero extend
    ctx.emit(  str_  (a, tmp2))

    # left shift by the correct amount
    ctx.emit(  lshl_ (tmp2, tmp0, tmp3))

    # truncate to get first half of result
    ctx.emit(  str_  (tmp3, tmp4))

    # shift out then truncate to get second half of result
    ctx.emit(  lshr_ (tmp3, imm(max_shift+1, size * 2), tmp5))
    ctx.emit(  str_  (tmp5, tmp6))

    # or both halves of the result
    ctx.emit(  or_   (tmp4, tmp6, result))

    # compute carry flag (last bit that was shifted across)
    ctx.emit(  and_  (result, imm(1, size), tmp7))
    ctx.emit(  bisnz_(tmp7, r('cf', 8)))

    if isinstance(b, reil.ImmediateOperand) and b.value == 1:
        # overflow flag is msb of input ^ msb output
        tmp9 = ctx.tmp(size)
        ctx.emit(  and_  (a, imm(sign_bit(size), size), tmp8))
        ctx.emit(  xor_  (tmp8, tmp7, tmp8))
        ctx.emit(  bisnz_(tmp8, r('of', 8)))
    else:
        ctx.emit(  undef_(r('of', 8)))

    operand.set(ctx, i, 0, result)

    ctx.emit(  'zero_rotate')
    ctx.emit(  nop_())
Beispiel #14
0
def x86_rol(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    max_shift = a.size - 1

    size = a.size
    tmp0 = ctx.tmp(size)
    tmp1 = ctx.tmp(8)
    tmp2 = ctx.tmp(size * 2)
    tmp3 = ctx.tmp(size * 2)
    tmp4 = ctx.tmp(size)
    tmp5 = ctx.tmp(size * 2)
    tmp6 = ctx.tmp(size * 2)
    tmp7 = ctx.tmp(size)
    tmp8 = ctx.tmp(size)
    result = ctx.tmp(size)

    # the rotate amount is truncated at word_size - 1
    ctx.emit(and_(b, imm(max_shift, size), tmp0))

    # zero rotate doesn't affect flags
    ctx.emit(bisz_(tmp0, tmp1))
    ctx.emit(jcc_(tmp1, 'zero_rotate'))

    # zero extend
    ctx.emit(str_(a, tmp2))

    # left shift by the correct amount
    ctx.emit(lshl_(tmp2, tmp0, tmp3))

    # truncate to get first half of result
    ctx.emit(str_(tmp3, tmp4))

    # shift out then truncate to get second half of result
    ctx.emit(lshr_(tmp3, imm(max_shift + 1, size * 2), tmp5))
    ctx.emit(str_(tmp5, tmp6))

    # or both halves of the result
    ctx.emit(or_(tmp4, tmp6, result))

    # compute carry flag (last bit that was shifted across)
    ctx.emit(and_(result, imm(1, size), tmp7))
    ctx.emit(bisnz_(tmp7, r('cf', 8)))

    if isinstance(b, reil.ImmediateOperand) and b.value == 1:
        # overflow flag is msb of input ^ msb output
        tmp9 = ctx.tmp(size)
        ctx.emit(and_(a, imm(sign_bit(size), size), tmp8))
        ctx.emit(xor_(tmp8, tmp7, tmp8))
        ctx.emit(bisnz_(tmp8, r('of', 8)))
    else:
        ctx.emit(undef_(r('of', 8)))

    operand.set(ctx, i, 0, result)

    ctx.emit('zero_rotate')
    ctx.emit(nop_())
Beispiel #15
0
def x86_movlpd(ctx, i):
    a = operand.get(ctx, i, 0)
    value = operand.get(ctx, i, 1)
    tmp0 = ctx.tmp(a.size)
    tmp1 = ctx.tmp(a.size)
    ctx.emit(  and_  (a, imm(0xffffffffffffffff0000000000000000, 128), tmp0))
    ctx.emit(  or_   (tmp0, value, tmp0))

    operand.set(ctx, i, 0, tmp0)
Beispiel #16
0
def x86_movlpd(ctx, i):
    a = operand.get(ctx, i, 0)
    value = operand.get(ctx, i, 1)
    tmp0 = ctx.tmp(a.size)
    tmp1 = ctx.tmp(a.size)
    ctx.emit(and_(a, imm(0xffffffffffffffff0000000000000000, 128), tmp0))
    ctx.emit(or_(tmp0, value, tmp0))

    operand.set(ctx, i, 0, tmp0)
Beispiel #17
0
def x86_pcmpgt(ctx, i, size):
    a_id, b_id, dst_id = vex_opnds(i)

    a = operand.get(ctx, i, a_id)
    b = operand.get(ctx, i, b_id)

    a_parts = unpack(ctx, a, size)
    b_parts = unpack(ctx, b, size)

    a_sign = ctx.tmp(size)
    a_abs = ctx.tmp(size)
    b_sign = ctx.tmp(size)
    b_abs = ctx.tmp(size)

    tmp0 = ctx.tmp(size * 2)
    a_abs_lt_b_abs = ctx.tmp(8)
    tmp1 = ctx.tmp(size)
    a_b_same_sign = ctx.tmp(8)
    a_neg = ctx.tmp(8)
    b_nonneg = ctx.tmp(8)
    a_neg_and_b_nonneg = ctx.tmp(8)
    cond = ctx.tmp(8)

    dst_parts = []
    for a_part, b_part in zip(a_parts, b_parts):
        dst_part = ctx.tmp(size)

        ctx.emit(and_(a_part, imm(sign_bit(size), size), a_sign))
        ctx.emit(and_(a_part, imm(~sign_bit(size), size), a_abs))
        ctx.emit(and_(b_part, imm(sign_bit(size), size), b_sign))
        ctx.emit(and_(b_part, imm(~sign_bit(size), size), b_abs))

        # a < b <==> (|a| < |b| and sign(a) == sign(b)) or (a < 0 and b >= 0)

        # |a| < |b|
        ctx.emit(sub_(a_abs, b_abs, tmp0))
        ctx.emit(and_(tmp0, imm(sign_bit(size * 2), size * 2), tmp0))
        ctx.emit(bisz_(tmp0, a_abs_lt_b_abs))

        # sign(a) == sign(b)
        ctx.emit(xor_(a_sign, b_sign, tmp1))
        ctx.emit(bisz_(tmp1, a_b_same_sign))

        # a < 0 and b >= 0
        ctx.emit(bisnz_(a_sign, a_neg))
        ctx.emit(bisz_(b_sign, b_nonneg))
        ctx.emit(and_(a_neg, b_nonneg, a_neg_and_b_nonneg))

        ctx.emit(and_(a_abs_lt_b_abs, a_b_same_sign, cond))
        ctx.emit(or_(cond, a_neg_and_b_nonneg, cond))
        ctx.emit(mul_(cond, imm(mask(size), size), dst_part))

        dst_parts.append(dst_part)

    value = pack(ctx, dst_parts)

    operand.set(ctx, i, dst_id, value)
Beispiel #18
0
def x86_not(ctx, i):
    a = operand.get(ctx, i, 0)

    size = a.size
    result = ctx.tmp(size)

    ctx.emit(  xor_  (a, imm(mask(size), size), result))

    operand.set(ctx, i, 0, result)
Beispiel #19
0
def x86_not(ctx, i):
    a = operand.get(ctx, i, 0)

    size = a.size
    result = ctx.tmp(size)

    ctx.emit(xor_(a, imm(mask(size), size), result))

    operand.set(ctx, i, 0, result)
Beispiel #20
0
def x86_shl(ctx, i):
    a = operand.get(ctx, i, 0)

    if len(i.operands) == 1:
        if i.mnemonic.endswith('1'):
            b = imm(1, a.size)
        else:
            b = ctx.counter
    else:
        b = operand.get(ctx, i, 1)

    max_shift = a.size-1

    size = a.size
    tmp0 = ctx.tmp(size)
    tmp1 = ctx.tmp(size * 2)
    tmp2 = ctx.tmp(size * 2)
    tmp3 = ctx.tmp(size * 2)
    tmp4 = ctx.tmp(8)
    tmp5 = ctx.tmp(size)
    tmp6 = ctx.tmp(8)
    result = ctx.tmp(size)

    ctx.emit(  and_  (b, imm(max_shift, size), tmp0))

    # zero extend
    ctx.emit(  str_  (a, tmp1))

    # left shift by the correct amount
    ctx.emit(  lshl_ (tmp1, tmp0, tmp2))

    # truncate to get result
    ctx.emit(  str_  (tmp2, result))

    # compute carry flag
    ctx.emit(  and_  (tmp2, imm(carry_bit(size), size * 2), tmp3))
    ctx.emit(  bisnz_(tmp3, r('cf', 8)))

    ctx.emit(  equ_  (tmp0, imm(1, size), tmp4))
    ctx.emit(  bisz_ (tmp4, tmp4))
    ctx.emit(  jcc_  (tmp4, 'no_overflow_flag'))

    # compute overflow flag
    ctx.emit(  and_  (result, imm(sign_bit(size), size), tmp5))
    ctx.emit(  bisz_ (tmp5, tmp6))
    ctx.emit(  equ_  (r('cf', 8), tmp6, r('of', 8)))
    ctx.emit(  jcc_  (imm(1, 8), 'overflow_flag_done'))

    ctx.emit('no_overflow_flag')
    ctx.emit(  str_  (imm(0, 8), r('of', 8)))

    ctx.emit('overflow_flag_done')

    _shift_set_flags(ctx, result)

    operand.set(ctx, i, 0, result)
Beispiel #21
0
def x86_shl(ctx, i):
    a = operand.get(ctx, i, 0)

    if len(i.operands) == 1:
        if i.mnemonic.endswith('1'):
            b = imm(1, a.size)
        else:
            b = ctx.counter
    else:
        b = operand.get(ctx, i, 1)

    max_shift = a.size - 1

    size = a.size
    tmp0 = ctx.tmp(size)
    tmp1 = ctx.tmp(size * 2)
    tmp2 = ctx.tmp(size * 2)
    tmp3 = ctx.tmp(size * 2)
    tmp4 = ctx.tmp(8)
    tmp5 = ctx.tmp(size)
    tmp6 = ctx.tmp(8)
    result = ctx.tmp(size)

    ctx.emit(and_(b, imm(max_shift, size), tmp0))

    # zero extend
    ctx.emit(str_(a, tmp1))

    # left shift by the correct amount
    ctx.emit(lshl_(tmp1, tmp0, tmp2))

    # truncate to get result
    ctx.emit(str_(tmp2, result))

    # compute carry flag
    ctx.emit(and_(tmp2, imm(carry_bit(size), size * 2), tmp3))
    ctx.emit(bisnz_(tmp3, r('cf', 8)))

    ctx.emit(equ_(tmp0, imm(1, size), tmp4))
    ctx.emit(bisz_(tmp4, tmp4))
    ctx.emit(jcc_(tmp4, 'no_overflow_flag'))

    # compute overflow flag
    ctx.emit(and_(result, imm(sign_bit(size), size), tmp5))
    ctx.emit(bisz_(tmp5, tmp6))
    ctx.emit(equ_(r('cf', 8), tmp6, r('of', 8)))
    ctx.emit(jcc_(imm(1, 8), 'overflow_flag_done'))

    ctx.emit('no_overflow_flag')
    ctx.emit(str_(imm(0, 8), r('of', 8)))

    ctx.emit('overflow_flag_done')

    _shift_set_flags(ctx, result)

    operand.set(ctx, i, 0, result)
Beispiel #22
0
def x86_pxor(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    size = min(a.size, b.size)
    value = ctx.tmp(size)

    ctx.emit(  xor_  (a, b, value))

    operand.set(ctx, i, 0, value)
Beispiel #23
0
def x86_pxor(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    size = min(a.size, b.size)
    value = ctx.tmp(size)

    ctx.emit(xor_(a, b, value))

    operand.set(ctx, i, 0, value)
Beispiel #24
0
def x86_neg(ctx, i):
    a = operand.get(ctx, i, 0)

    result = ctx.tmp(a.size * 2)

    ctx.emit(  sub_  (imm(0, a.size), a, result))

    _sub_set_flags(ctx, imm(0, a.size), a,  result)

    operand.set(ctx, i, 0, result)
Beispiel #25
0
def x86_xchg(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    tmp0 = ctx.tmp(a.size)

    ctx.emit(  str_  (a, tmp0))

    operand.set(ctx, i, 0, b)
    operand.set(ctx, i, 1, tmp0)
Beispiel #26
0
def x86_movzx(ctx, i):
    value = None

    if len(i.operands) == 1:
        # source is the accumulator
        value = ctx.accumulator
    else:
        value = operand.get(ctx, i, 1)

    operand.set(ctx, i, 0, value, clear=True, sign_extend=False)
Beispiel #27
0
def x86_pop(ctx, i):
    a = operand.get(ctx, i, 0)
    value = ctx.tmp(a.size)

    ctx.emit(  ldm_  (ctx.stack_ptr, value))
    ctx.emit(  add_  (ctx.stack_ptr,
                      imm(value.size // 8, ctx.word_size),
                      ctx.stack_ptr))

    operand.set(ctx, i, 0, value)
Beispiel #28
0
def x86_neg(ctx, i):
    a = operand.get(ctx, i, 0)

    result = ctx.tmp(a.size * 2)

    ctx.emit(  sub_  (imm(0, a.size), a, result))

    _sub_set_flags(ctx, imm(0, a.size), a,  result)

    operand.set(ctx, i, 0, result)
Beispiel #29
0
def x86_xchg(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    tmp0 = ctx.tmp(a.size)

    ctx.emit(  str_  (a, tmp0))

    operand.set(ctx, i, 0, b)
    operand.set(ctx, i, 1, tmp0)
Beispiel #30
0
def x86_inc(ctx, i):
    a = operand.get(ctx, i, 0)

    b = imm(1, a.size)
    result = ctx.tmp(a.size * 2)

    ctx.emit(  add_  (a, b, result))

    _add_set_flags(ctx, a, b, result, cf=False)

    operand.set(ctx, i, 0, result)
Beispiel #31
0
def x86_psrldq(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)
    result = ctx.tmp(a.size)

    shift = min(b.value, 16)

    # right shift by the correct amount
    ctx.emit(lshr_(a, imm(shift * 8, 8), result))

    operand.set(ctx, i, 0, result)
Beispiel #32
0
def x86_pslldq(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)
    result = ctx.tmp(a.size)

    shift = min(b.value, 16)

    # left shift by the correct amount
    ctx.emit(  lshl_ (a, imm(shift * 8, 8), result))

    operand.set(ctx, i, 0, result)
Beispiel #33
0
def x86_inc(ctx, i):
    a = operand.get(ctx, i, 0)

    b = imm(1, a.size)
    result = ctx.tmp(a.size * 2)

    ctx.emit(  add_  (a, b, result))

    _add_set_flags(ctx, a, b, result, cf=False)

    operand.set(ctx, i, 0, result)
Beispiel #34
0
def x86_xor(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1, a.size)

    size = min(a.size, b.size)
    result = ctx.tmp(size)

    ctx.emit(xor_(a, b, result))

    _logic_set_flags(ctx, result)

    operand.set(ctx, i, 0, result, clear=True)
Beispiel #35
0
def x86_xor(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1, a.size)

    size = min(a.size, b.size)
    result = ctx.tmp(size)

    ctx.emit(  xor_  (a, b, result))

    _logic_set_flags(ctx, result)

    operand.set(ctx, i, 0, result, clear=True)
Beispiel #36
0
def x86_movhpd(ctx, i):
    a = operand.get(ctx, i, 0)
    value = operand.get(ctx, i, 1)
    tmp0 = ctx.tmp(a.size)
    tmp1 = ctx.tmp(a.size)

    ctx.emit(and_(a, imm(0x0000000000000000ffffffffffffffff, 128), tmp0))
    ctx.emit(str_(value, tmp1))
    ctx.emit(lshl_(tmp1, imm(64, 8), tmp1))
    ctx.emit(or_(tmp0, tmp1, tmp0))

    operand.set(ctx, i, 0, tmp0)
Beispiel #37
0
def x86_and(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1, a.size)

    size = min(a.size, b.size)
    result = ctx.tmp(size)

    ctx.emit(  and_  (a, b, result))

    _logic_set_flags(ctx, result)

    operand.set(ctx, i, 0, result)
Beispiel #38
0
def x86_and(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1, a.size)

    size = min(a.size, b.size)
    result = ctx.tmp(size)

    ctx.emit(and_(a, b, result))

    _logic_set_flags(ctx, result)

    operand.set(ctx, i, 0, result)
Beispiel #39
0
def x86_movhpd(ctx, i):
    a = operand.get(ctx, i, 0)
    value = operand.get(ctx, i, 1)
    tmp0 = ctx.tmp(a.size)
    tmp1 = ctx.tmp(a.size)

    ctx.emit(  and_  (a, imm(0x0000000000000000ffffffffffffffff, 128), tmp0))
    ctx.emit(  str_  (value, tmp1))
    ctx.emit(  lshl_ (tmp1, imm(64, 8), tmp1))
    ctx.emit(  or_   (tmp0, tmp1, tmp0))

    operand.set(ctx, i, 0, tmp0)
Beispiel #40
0
def _write_bit(ctx, i, base_index, offset_index, bit):
    if operand.is_memory(ctx, i, base_index):
        # nasty case, indexing into in-memory bitstring; offset can be
        # > word_size

        base = operand.get_address(ctx, i, base_index)
        offset = operand.get(ctx, i, offset_index)
        offset_sign = ctx.tmp(8)
        byte_offset = ctx.tmp(base.size)
        tmp0 = ctx.tmp(offset.size)
        byte = ctx.tmp(8)
        bitmask = ctx.tmp(8)

        ctx.emit(and_(offset, imm(sign_bit(offset.size), offset.size), tmp0))
        ctx.emit(bisnz_(tmp0, offset_sign))
        ctx.emit(and_(offset, imm(~sign_bit(offset.size), offset.size),
                      offset))
        ctx.emit(div_(offset, imm(8, offset.size), byte_offset))
        ctx.emit(mod_(offset, imm(8, offset.size), offset))

        ctx.emit(jcc_(offset_sign, 'negative_offset'))
        ctx.emit(add_(base, byte_offset, base))
        ctx.emit(jcc_(imm(1, 8), 'base_calculated'))

        ctx.emit('negative_offset')
        ctx.emit(sub_(base, byte_offset, base))

        ctx.emit('base_calculated')
        ctx.emit(ldm_(base, byte))
        ctx.emit(lshl_(imm(1, 8), offset, bitmask))
        ctx.emit(xor_(bitmask, imm(mask(8), 8), bitmask))
        ctx.emit(and_(byte, bitmask, byte))
        ctx.emit(lshl_(bit, offset, bitmask))
        ctx.emit(or_(byte, bit, byte))
        ctx.emit(stm_(byte, base))

    else:
        # simple case, it's a register
        a = operand.get(ctx, i, base_index)
        offset = operand.get(ctx, i, offset_index)
        bitmask = ctx.tmp(a.size)
        tmp0 = ctx.tmp(a.size)
        tmp1 = ctx.tmp(a.size)

        ctx.emit(lshl_(imm(1, a.size), offset, bitmask))
        ctx.emit(xor_(bitmask, imm(mask(a.size), a.size), bitmask))
        ctx.emit(and_(a, bitmask, tmp0))
        ctx.emit(str_(bit, tmp1))
        ctx.emit(lshl_(tmp1, offset, tmp1))
        ctx.emit(or_(tmp0, tmp1, tmp1))

        operand.set(ctx, i, base_index, tmp1)
Beispiel #41
0
def x86_sub(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    b = _sign_extend(ctx, a, b)

    result = ctx.tmp(a.size * 2)

    ctx.emit(  sub_  (a, b, result))

    _sub_set_flags(ctx, a, b, result)

    operand.set(ctx, i, 0, result)
Beispiel #42
0
def x86_andn(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1, a.size)

    size = min(a.size, b.size)
    result = ctx.tmp(size)

    ctx.emit(  xor_  (a, imm(mask(size), size), result))
    ctx.emit(  and_  (result, b, result))

    _logic_set_flags(ctx, result)

    operand.set(ctx, i, 0, result)
Beispiel #43
0
def x86_andn(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1, a.size)

    size = min(a.size, b.size)
    result = ctx.tmp(size)

    ctx.emit(xor_(a, imm(mask(size), size), result))
    ctx.emit(and_(result, b, result))

    _logic_set_flags(ctx, result)

    operand.set(ctx, i, 0, result)
Beispiel #44
0
def x86_sub(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    b = _sign_extend(ctx, a, b)

    result = ctx.tmp(a.size * 2)

    ctx.emit(  sub_  (a, b, result))

    _sub_set_flags(ctx, a, b, result)

    operand.set(ctx, i, 0, result)
Beispiel #45
0
def _write_bit(ctx, i, base_index, offset_index, bit):
    if operand.is_memory(ctx, i, base_index):
        # nasty case, indexing into in-memory bitstring; offset can be
        # > word_size

        base = operand.get_address(ctx, i, base_index)
        offset = operand.get(ctx, i, offset_index)
        offset_sign = ctx.tmp(8)
        byte_offset = ctx.tmp(base.size)
        tmp0 = ctx.tmp(offset.size)
        byte = ctx.tmp(8)
        bitmask = ctx.tmp(8)

        ctx.emit(  and_  (offset, imm(sign_bit(offset.size), offset.size), tmp0))
        ctx.emit(  bisnz_(tmp0, offset_sign))
        ctx.emit(  and_  (offset, imm(~sign_bit(offset.size), offset.size), offset))
        ctx.emit(  div_  (offset, imm(8, offset.size), byte_offset))
        ctx.emit(  mod_  (offset, imm(8, offset.size), offset))

        ctx.emit(  jcc_  (offset_sign, 'negative_offset'))
        ctx.emit(  add_  (base, byte_offset, base))
        ctx.emit(  jcc_  (imm(1, 8), 'base_calculated'))

        ctx.emit('negative_offset')
        ctx.emit(  sub_  (base, byte_offset, base))

        ctx.emit('base_calculated')
        ctx.emit(  ldm_  (base, byte))
        ctx.emit(  lshl_ (imm(1, 8), offset, bitmask))
        ctx.emit(  xor_  (bitmask, imm(mask(8), 8), bitmask))
        ctx.emit(  and_  (byte, bitmask, byte))
        ctx.emit(  lshl_ (bit, offset, bitmask))
        ctx.emit(  or_   (byte, bit, byte))
        ctx.emit(  stm_  (byte, base))

    else:
        # simple case, it's a register
        a = operand.get(ctx, i, base_index)
        offset = operand.get(ctx, i, offset_index)
        bitmask = ctx.tmp(a.size)
        tmp0 = ctx.tmp(a.size)
        tmp1 = ctx.tmp(a.size)

        ctx.emit(  lshl_ (imm(1, a.size), offset, bitmask))
        ctx.emit(  xor_  (bitmask, imm(mask(a.size), a.size), bitmask))
        ctx.emit(  and_  (a, bitmask, tmp0))
        ctx.emit(  str_  (bit, tmp1))
        ctx.emit(  lshl_ (tmp1, offset, tmp1))
        ctx.emit(  or_   (tmp0, tmp1, tmp1))

        operand.set(ctx, i, base_index, tmp1)
Beispiel #46
0
def x86_adc(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    b = _sign_extend(ctx, a, b)

    result = ctx.tmp(a.size * 2)

    ctx.emit(  add_  (a, b, result))
    ctx.emit(  add_  (result, r('cf', 8), result))

    _add_set_flags(ctx, a, b, result)

    operand.set(ctx, i, 0, result)
Beispiel #47
0
def x86_sbb(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    b = _sign_extend(ctx, a, b)

    result = ctx.tmp(a.size * 2)

    ctx.emit(  sub_  (a, b, result))
    ctx.emit(  sub_  (result, r('cf', 8), result))

    _sub_set_flags(ctx, a, b, result)

    operand.set(ctx, i, 0, result, clear=True)
Beispiel #48
0
def x86_pxor(ctx, i):
    a_id, b_id, dst_id = vex_opnds(i)

    a = operand.get(ctx, i, a_id)
    b = operand.get(ctx, i, b_id)
    value = ctx.tmp(a.size)

    ctx.emit(xor_(a, b, value))

    # TODO: this will clear all the remaining bits of the destination register,
    # which is incorrect for the legacy sse version. When ymmX register support
    # is added, this will be broken.

    operand.set(ctx, i, dst_id, value)
Beispiel #49
0
def x86_adc(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    b = _sign_extend(ctx, a, b)

    result = ctx.tmp(a.size * 2)

    ctx.emit(  add_  (a, b, result))
    ctx.emit(  add_  (result, r('cf', 8), result))

    _add_set_flags(ctx, a, b, result)

    operand.set(ctx, i, 0, result)
Beispiel #50
0
def x86_sar(ctx, i):
    a = operand.get(ctx, i, 0)

    if len(i.operands) == 1:
        if i.mnemonic.endswith('1'):
            b = imm(1, a.size)
        else:
            b = ctx.counter
    else:
        b = operand.get(ctx, i, 1)

    max_shift = a.size - 1

    size = a.size
    tmp0 = ctx.tmp(size)
    tmp1 = ctx.tmp(size * 2)
    tmp2 = ctx.tmp(size * 2)
    tmp3 = ctx.tmp(size * 2)
    tmp4 = ctx.tmp(size)
    tmp5 = ctx.tmp(size * 2)
    result = ctx.tmp(a.size)

    # the shift amount is truncated at word_size - 1
    ctx.emit(and_(b, imm(max_shift, size), tmp0))

    # zero extend
    ctx.emit(str_(a, tmp1))

    # left shift all the way
    ctx.emit(lshl_(tmp1, imm(max_shift + 1, size * 2), tmp2))

    # right shift by the correct amount
    ctx.emit(ashr_(tmp2, tmp0, tmp3))

    # save off the first bit that is going to be lost
    ctx.emit(and_(tmp3, imm(sign_bit(size), size * 2), tmp4))

    # shift out then truncate to get second half of result
    ctx.emit(ashr_(tmp3, imm(max_shift + 1, size * 2), tmp5))
    ctx.emit(str_(tmp5, result))

    # set sign flag
    ctx.emit(bisnz_(tmp4, r('cf', 8)))

    # overflow flag is always 0
    ctx.emit(str_(imm(0, 8), r('of', 8)))

    _shift_set_flags(ctx, result)

    operand.set(ctx, i, 0, result)
Beispiel #51
0
def x86_blsmsk(ctx, i):
    a = operand.get(ctx, i, 1)

    bit = imm(sign_bit(a.size), a.size)
    index = imm(a.size, a.size)

    bit = ctx.tmp(a.size)
    index = ctx.tmp(a.size)
    result = ctx.tmp(a.size)
    tmp0 = ctx.tmp(a.size)

    ctx.emit(jcc_(a, 'non-zero'))

    # if a is zero
    ctx.emit(str_(imm(0, 8), r('cf', 8)))
    ctx.emit(jcc_(imm(1, 8), 'done'))

    # set up loop variables and clear zf
    ctx.emit('non-zero')
    ctx.emit(str_(imm(0, 8), r('zf', 8)))
    ctx.emit(str_(imm(0, a.size), index))
    ctx.emit(str_(imm(1, a.size), bit))

    # LOOP
    ctx.emit('loop')
    ctx.emit(and_(a, bit, tmp0))
    ctx.emit(jcc_(tmp0, 'found'))

    # update these for the next one
    ctx.emit(add_(index, imm(1, a.size), index))
    ctx.emit(lshl_(bit, imm(1, a.size), bit))
    ctx.emit(jcc_(imm(1, 8), 'loop'))

    # non-zero case epilogue
    ctx.emit('found')
    ctx.emit(str_(imm(mask(a.size), a.size), result))
    ctx.emit(lshl_(result, index, result))
    ctx.emit(lshr_(result, index, result))
    ctx.emit(xor_(imm(mask(a.size), a.size), result, result))

    operand.set(ctx, i, 0, result, clear=True)

    set_sf(ctx, result)
    ctx.emit(str_(imm(1, 8), r('cf', 8)))

    ctx.emit('done')
    ctx.emit(str_(imm(0, 8), r('zf', 8)))
    ctx.emit(str_(imm(0, 8), r('of', 8)))
    ctx.emit(undef_(r('pf', 8)))
    ctx.emit(undef_(r('af', 8)))
Beispiel #52
0
def x86_sbb(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    b = _sign_extend(ctx, a, b)

    result = ctx.tmp(a.size * 2)

    ctx.emit(  sub_  (a, b, result))
    ctx.emit(  sub_  (result, r('cf', 8), result))

    _sub_set_flags(ctx, a, b, result)

    operand.set(ctx, i, 0, result, clear=True)
Beispiel #53
0
def x86_sar(ctx, i):
    a = operand.get(ctx, i, 0)

    if len(i.operands) == 1:
        if i.mnemonic.endswith('1'):
            b = imm(1, a.size)
        else:
            b = ctx.counter
    else:
        b = operand.get(ctx, i, 1)

    max_shift = a.size-1

    size = a.size
    tmp0 = ctx.tmp(size)
    tmp1 = ctx.tmp(size * 2)
    tmp2 = ctx.tmp(size * 2)
    tmp3 = ctx.tmp(size * 2)
    tmp4 = ctx.tmp(size)
    tmp5 = ctx.tmp(size * 2)
    result = ctx.tmp(a.size)

    # the shift amount is truncated at word_size - 1
    ctx.emit(  and_  (b, imm(max_shift, size), tmp0))

    # zero extend
    ctx.emit(  str_  (a, tmp1))

    # left shift all the way
    ctx.emit(  lshl_ (tmp1, imm(max_shift+1, size * 2), tmp2))

    # right shift by the correct amount
    ctx.emit(  ashr_ (tmp2, tmp0, tmp3))

    # save off the first bit that is going to be lost
    ctx.emit(  and_  (tmp3, imm(sign_bit(size), size * 2), tmp4))

    # shift out then truncate to get second half of result
    ctx.emit(  ashr_ (tmp3, imm(max_shift+1, size * 2), tmp5))
    ctx.emit(  str_  (tmp5, result))

    # set sign flag
    ctx.emit(  bisnz_(tmp4, r('cf', 8)))

    # overflow flag is always 0
    ctx.emit(  str_  (imm(0, 8), r('of', 8)))

    _shift_set_flags(ctx, result)

    operand.set(ctx, i, 0, result)
Beispiel #54
0
def x86_bswap(ctx, i):
    a = operand.get(ctx, i, 0)

    if a.size != 32:
        raise pyreil.error.IllegalInstruction(
            'bswap on non 32-bit value!')

    tmp0 = ctx.tmp(32)
    tmp1 = ctx.tmp(32)
    tmp2 = ctx.tmp(32)
    tmp3 = ctx.tmp(32)
    tmp4 = ctx.tmp(32)
    tmp5 = ctx.tmp(32)
    tmp6 = ctx.tmp(32)
    tmp7 = ctx.tmp(32)
    tmp8 = ctx.tmp(32)
    result = ctx.tmp(32)

    bytes = [
        ctx.tmp(8),
        ctx.tmp(8),
        ctx.tmp(8),
        ctx.tmp(8),
    ]

    lshift8 = imm(8, 8)
    rshift8 = imm(-8, 8)

    # decompose into bytes
    ctx.emit(  str_  (a, bytes[0]))
    ctx.emit(  bsh_  (a, lshift8, tmp0))
    ctx.emit(  str_  (tmp0, bytes[1]))
    ctx.emit(  bsh_  (tmp0, lshift8, tmp1))
    ctx.emit(  str_  (tmp1, bytes[2]))
    ctx.emit(  bsh_  (tmp1, lshift8, tmp2))
    ctx.emit(  str_  (tmp2, bytes[3]))

    # put back together
    ctx.emit(  str_  (bytes[0], tmp3))
    ctx.emit(  bsh_  (tmp3, rshift8, tmp4))
    ctx.emit(  add_  (bytes[1], tmp4, tmp5))
    ctx.emit(  bsh_  (tmp5, rshift8, tmp6))
    ctx.emit(  add_  (bytes[1], tmp6, tmp7))
    ctx.emit(  bsh_  (tmp7, rshift8, tmp8))
    ctx.emit(  add_  (bytes[1], tmp8, result))

    operand.set(ctx, i, 0, result)
Beispiel #55
0
def x86_ror(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    max_shift = ctx.word_size - 1

    size = a.size
    tmp0 = ctx.tmp(size)
    tmp1 = ctx.tmp(size * 2)
    tmp2 = ctx.tmp(size * 2)
    tmp3 = ctx.tmp(size * 2)
    tmp4 = ctx.tmp(size)
    tmp5 = ctx.tmp(size * 2)
    tmp6 = ctx.tmp(size)
    result = ctx.tmp(size)

    # the rotate amount is truncated at word_size - 1
    ctx.emit(and_(b, imm(max_shift, size), tmp0))

    # zero extend
    ctx.emit(str_(a, tmp1))

    # left shift all the way
    ctx.emit(lshl_(tmp1, imm(max_shift + 1, size * 2), tmp2))

    # right shift by the correct amount
    ctx.emit(lshr_(tmp2, tmp0, tmp3))

    # truncate to get first half of result
    ctx.emit(str_(tmp3, tmp4))

    # shift out then truncate to get second half of result
    ctx.emit(lshr_(tmp3, imm(max_shift + 1, size * 2), tmp5))
    ctx.emit(str_(tmp5, tmp6))

    # or both halves of the result
    ctx.emit(or_(tmp4, tmp6, result))

    # TODO: compute carry flag

    if isinstance(b, pyreil.ImmediateOperand) and b.value == 1:
        # TODO: compute overflow flag
        pass
    else:
        ctx.emit(undef_(r('of', 8)))

    operand.set(ctx, i, 0, result)
Beispiel #56
0
def x86_cmpxchg16b(ctx, i):
    rdx = operand.get_register(ctx, i, 'rdx')
    rax = operand.get_register(ctx, i, 'rax')
    rdx_rax = ctx.tmp(128)

    rcx = operand.get_register(ctx, i, 'rcx')
    rbx = operand.get_register(ctx, i, 'rbx')
    rcx_rbx = ctx.tmp(128)

    value = operand.get(ctx, i, 0)

    tmp0 = ctx.tmp(128)
    tmp1 = ctx.tmp(8)

    result_rax = ctx.tmp(64)
    result_rdx = ctx.tmp(64)

    ctx.emit(lshl_(rdx, imm(64, 8), rdx_rax))
    ctx.emit(str_(rax, tmp0))
    ctx.emit(or_(rdx_rax, tmp0, rdx_rax))

    ctx.emit(equ_(value, rdx_rax, tmp1))
    ctx.emit(jcc_(tmp1, 'equal'))

    ctx.emit('not-equal')
    ctx.emit(str_(value, result_rax))
    ctx.emit(lshr_(value, imm(64, 8), value))
    ctx.emit(str_(value, result_rdx))

    operand.set_register(ctx, i, 'rdx', result_rdx)
    operand.set_register(ctx, i, 'rax', result_rax)

    ctx.emit(str_(imm(0, 8), r('zf', 8)))
    ctx.emit(jcc_(imm(1, 8), 'done'))

    ctx.emit('equal')
    ctx.emit(lshl_(rcx, imm(64, 8), rcx_rbx))
    ctx.emit(str_(rbx, tmp0))
    ctx.emit(or_(rcx_rbx, tmp0, rcx_rbx))

    operand.set(ctx, i, 0, rcx_rbx)

    ctx.emit(str_(imm(1, 8), r('zf', 8)))

    ctx.emit('done')
    ctx.emit(nop_())
Beispiel #57
0
def x86_adox(ctx, i):
    a = operand.get(ctx, i, 0)
    b = operand.get(ctx, i, 1)

    b = _sign_extend(ctx, a, b)

    result = ctx.tmp(a.size * 2)
    tmp0 = ctx.tmp(a.size * 2)

    ctx.emit(add_(a, b, result))
    ctx.emit(add_(result, r('of', 8), result))

    # only set carry flag
    ctx.emit(and_(result, imm(carry_bit(a.size), result.size), tmp0))
    ctx.emit(bisnz_(tmp0, r('of', 8)))

    operand.set(ctx, i, 0, result)
Beispiel #58
0
def x86_imul(ctx, i):
    if len(i.operands) == 1:
        # single operand form
        a = ctx.accumulator
        b = ctx.data

        result = ctx.tmp(a.size * 2)

        ctx.emit(  mul_  (a, b, result))

        ctx.emit(  str_  (result, ctx.accumulator))
        ctx.emit(  lshr_ (result, imm(a.size, 8), result))
        ctx.emit(  str_  (result, ctx.data))

        _imul_set_flags(ctx, result)

    elif len(i.operands) == 2:
        # double operand form
        a = operand.get(ctx, i, 0)
        b = operand.get(ctx, i, 1)

        result = ctx.tmp(a.size * 2)

        ctx.emit(  mul_  (a, b, result))

        operand.set(ctx, i, 0, result)

        _imul_set_flags(ctx, result)

    else:
        # triple operand form
        a = operand.get(ctx, i, 1)
        b = operand.get(ctx, i, 2)

        if b.size < a.size:
            prev_b = b
            b = ctx.tmp(a.size)
            ctx.emit(  sex_  (prev_b, b))

        result = ctx.tmp(a.size * 2)

        ctx.emit(  mul_  (a, b, result))

        operand.set(ctx, i, 0, result)

        _imul_set_flags(ctx, result)