Beispiel #1
0
    def build_graph(self):
        # Build graph
        sg_global_step = graph.GlobalStep()
        sg_network = Network()
        self.actor = sg_network.actor
        self.critic = sg_network.critic

        if da3c_config.config.optimizer == 'Adam':
            sg_actor_optimizer = optimizer.AdamOptimizer(
                da3c_config.config.initial_learning_rate)
            sg_critic_optimizer = optimizer.AdamOptimizer(
                da3c_config.config.initial_learning_rate)
        else:
            sg_learning_rate = da3c_graph.LearningRate(
                sg_global_step, da3c_config.config.initial_learning_rate)
            sg_actor_optimizer = optimizer.RMSPropOptimizer(
                learning_rate=sg_learning_rate,
                decay=da3c_config.config.RMSProp.decay,
                momentum=0.0,
                epsilon=da3c_config.config.RMSProp.epsilon)
            sg_critic_optimizer = optimizer.RMSPropOptimizer(
                learning_rate=sg_learning_rate,
                decay=da3c_config.config.RMSProp.decay,
                momentum=0.0,
                epsilon=da3c_config.config.RMSProp.epsilon)
        sg_actor_gradients = optimizer.Gradients(self.actor.weights,
                                                 optimizer=sg_actor_optimizer)
        sg_critic_gradients = optimizer.Gradients(
            self.critic.weights, optimizer=sg_critic_optimizer)

        if da3c_config.config.use_icm:
            sg_icm_optimizer = optimizer.AdamOptimizer(
                da3c_config.config.icm.lr)
            sg_icm_weights = icm_model.ICM().weights
            sg_icm_gradients = optimizer.Gradients(sg_icm_weights,
                                                   optimizer=sg_icm_optimizer)

            # Expose ICM public API
            self.op_icm_get_weights = self.Op(sg_icm_weights)
            self.op_icm_apply_gradients = self.Op(
                sg_icm_gradients.apply,
                gradients=sg_icm_gradients.ph_gradients)

        sg_initialize = graph.Initialize()

        # Expose public API
        self.op_n_step = self.Op(sg_global_step.n)
        self.op_check_weights = self.Ops(self.actor.weights.check,
                                         self.critic.weights.check)
        self.op_get_weights = self.Ops(self.actor.weights, self.critic.weights)
        self.op_apply_gradients = self.Ops(
            sg_actor_gradients.apply,
            sg_critic_gradients.apply,
            sg_global_step.increment,
            gradients=(sg_actor_gradients.ph_gradients,
                       sg_critic_gradients.ph_gradients),
            increment=sg_global_step.ph_increment)
        self.op_initialize = self.Op(sg_initialize)
Beispiel #2
0
    def build_graph(self):
        sg_weights = _ManagerNetwork().weights

        sg_global_step = graph.GlobalStep()
        # self.learning_rate_input = graph.Placeholder(np.float32, shape=(1,), name="manager_lr")
        # tf.placeholder(tf.float32, [], name="manager_lr")
        sg_learning_rate = fun_graph.LearningRate(sg_global_step)

        sg_optimizer = optimizer.RMSPropOptimizer(
            learning_rate=sg_learning_rate,
            decay=cfg.RMSProp.decay,
            momentum=0.0,
            epsilon=cfg.RMSProp.epsilon)

        sg_gradients = optimizer.Gradients(sg_weights, optimizer=sg_optimizer)
        sg_initialize = graph.Initialize()

        # Expose public API
        self.op_n_step = self.Op(sg_global_step.n)
        self.op_get_weights = self.Op(sg_weights)
        self.op_apply_gradients = self.Ops(
            sg_gradients.apply,
            sg_global_step.increment,
            gradients=sg_gradients.ph_gradients,
            increment=sg_global_step.ph_increment)
        self.op_initialize = self.Op(sg_initialize)
Beispiel #3
0
    def build_graph(self):
        sg_global_step = graph.GlobalStep()
        sg_network = Network()

        sg_get_weights_flatten = graph.GetVariablesFlatten(sg_network.weights)
        sg_set_weights_flatten = graph.SetVariablesFlatten(sg_network.weights)

        if config.use_linear_schedule:
            sg_learning_rate = lr_schedule.Linear(sg_global_step, config)
        else:
            sg_learning_rate = config.initial_learning_rate

        if config.optimizer == 'Adam':
            sg_optimizer = optimizer.AdamOptimizer(sg_learning_rate)
        elif config.optimizer == 'RMSProp':
            sg_optimizer = optimizer.RMSPropOptimizer(
                learning_rate=sg_learning_rate,
                decay=config.RMSProp.decay,
                epsilon=config.RMSProp.epsilon)
        else:
            assert False, 'There 2 valid options for optimizers: Adam | RMSProp'

        sg_gradients_apply = optimizer.Gradients(sg_network.weights,
                                                 optimizer=sg_optimizer)

        sg_average_reward = graph.LinearMovingAverage(
            config.avg_in_num_batches)
        sg_initialize = graph.Initialize()

        # Expose public API
        self.op_n_step = self.Op(sg_global_step.n)
        self.op_score = self.Op(sg_average_reward.average)

        self.op_get_weights_signed = self.Ops(sg_network.weights,
                                              sg_global_step.n)
        self.op_assign_weights = self.Op(sg_network.weights.assign,
                                         weights=sg_network.weights.ph_weights)

        self.op_apply_gradients = self.Ops(
            sg_gradients_apply.apply,
            sg_global_step.increment,
            gradients=sg_gradients_apply.ph_gradients,
            increment=sg_global_step.ph_increment)
        self.op_add_rewards_to_model_score_routine = self.Ops(
            sg_average_reward.add,
            reward_sum=sg_average_reward.ph_sum,
            reward_weight=sg_average_reward.ph_count)

        self.op_get_weights_flatten = self.Op(sg_get_weights_flatten)
        self.op_set_weights_flatten = self.Op(
            sg_set_weights_flatten, value=sg_set_weights_flatten.ph_value)

        # Gradient combining routines
        self.op_submit_gradients = self.Call(
            graph.get_gradients_apply_routine(config))

        self.op_initialize = self.Op(sg_initialize)
Beispiel #4
0
    def build_graph(self):
        sg_global_step = graph.GlobalStep()
        sg_network = Network()

        if config.optimizer == 'Adam':
            sg_optimizer = optimizer.AdamOptimizer(
                config.initial_learning_rate)
        elif config.optimizer == 'RMSProp':
            param = {}
            if hasattr(config, 'RMSProp'):
                if hasattr(config.RMSProp, "decay"):
                    param["decay"] = config.RMSProp.decay
                if hasattr(config.RMSProp, "epsilon"):
                    param["epsilon"] = config.RMSProp.epsilon

            sg_optimizer = optimizer.RMSPropOptimizer(
                config.initial_learning_rate, **param)
        else:
            raise NotImplementedError

        sg_gradients_apply = optimizer.Gradients(sg_network.weights,
                                                 optimizer=sg_optimizer)

        sg_initialize = graph.Initialize()

        # Expose public API
        self.op_n_step = self.Op(sg_global_step.n)

        self.op_get_weights = self.Op(sg_network.weights)
        self.op_assign_weights = self.Op(sg_network.weights.assign,
                                         weights=sg_network.weights.ph_weights)

        self.op_apply_gradients = self.Ops(
            sg_gradients_apply.apply,
            sg_global_step.increment,
            gradients=sg_gradients_apply.ph_gradients,
            n_steps=sg_global_step.ph_increment)

        self.op_initialize = self.Op(sg_initialize)
Beispiel #5
0
    def build_graph(self):
        sg_weights = _WorkerNetwork().weights

        sg_global_step = graph.GlobalStep()
        sg_learning_rate = fun_graph.LearningRate(sg_global_step)

        sg_optimizer = optimizer.RMSPropOptimizer(
            learning_rate=sg_learning_rate,
            decay=cfg.RMSProp.decay,
            momentum=0.0,
            epsilon=cfg.RMSProp.epsilon)

        sg_gradients = optimizer.Gradients(sg_weights, optimizer=sg_optimizer)
        sg_initialize = graph.Initialize()

        # Expose public API
        self.op_n_step = self.Op(sg_global_step.n)
        self.op_get_weights = self.Op(sg_weights)
        self.op_apply_gradients = self.Ops(
            sg_gradients.apply,
            sg_global_step.increment,
            gradients=sg_gradients.ph_gradients,
            increment=sg_global_step.ph_increment)
        self.op_initialize = self.Op(sg_initialize)
    def build_graph(self):
        # Build graph
        sg_global_step = graph.GlobalStep()
        sg_network = Network()
        sg_weights = sg_network.weights

        if da3c_config.config.use_linear_schedule:
            sg_learning_rate = lr_schedule.Linear(sg_global_step,
                                                  da3c_config.config)
        else:
            sg_learning_rate = da3c_config.config.initial_learning_rate

        if da3c_config.config.optimizer == 'Adam':
            sg_optimizer = optimizer.AdamOptimizer(sg_learning_rate)
        else:
            sg_optimizer = optimizer.RMSPropOptimizer(
                learning_rate=sg_learning_rate,
                decay=da3c_config.config.RMSProp.decay,
                momentum=0.0,
                epsilon=da3c_config.config.RMSProp.epsilon)
        sg_gradients = optimizer.Gradients(sg_weights, optimizer=sg_optimizer)

        if da3c_config.config.use_icm:
            sg_icm_optimizer = optimizer.AdamOptimizer(
                da3c_config.config.icm.lr)
            sg_icm_weights = icm_model.ICM().weights
            sg_icm_gradients = optimizer.Gradients(sg_icm_weights,
                                                   optimizer=sg_icm_optimizer)

            # Expose ICM public API
            self.op_icm_get_weights = self.Op(sg_icm_weights)
            self.op_icm_apply_gradients = self.Op(
                sg_icm_gradients.apply,
                gradients=sg_icm_gradients.ph_gradients)

        sg_average_reward = graph.LinearMovingAverage(
            da3c_config.config.avg_in_num_batches)
        sg_initialize = graph.Initialize()

        # Expose public API
        self.op_n_step = self.Op(sg_global_step.n)
        self.op_score = self.Op(sg_average_reward.average)

        self.op_check_weights = self.Op(sg_weights.check)
        self.op_get_weights = self.Ops(sg_weights, sg_global_step.n)

        self.op_apply_gradients = self.Ops(
            sg_gradients.apply,
            sg_global_step.increment,
            gradients=sg_gradients.ph_gradients,
            increment=sg_global_step.ph_increment)
        self.op_add_rewards_to_model_score_routine = self.Ops(
            sg_average_reward.add,
            reward_sum=sg_average_reward.ph_sum,
            reward_weight=sg_average_reward.ph_count)

        # Determine Gradients' applying methods: fifo (by default), averaging, delay compensation
        sg_get_weights_flatten = graph.GetVariablesFlatten(sg_weights)
        sg_set_weights_flatten = graph.SetVariablesFlatten(sg_weights)
        self.op_get_weights_flatten = self.Op(sg_get_weights_flatten)
        self.op_set_weights_flatten = self.Op(
            sg_set_weights_flatten, value=sg_set_weights_flatten.ph_value)

        self.op_submit_gradients = self.Call(
            graph.get_gradients_apply_routine(da3c_config.config))

        self.op_initialize = self.Op(sg_initialize)