Beispiel #1
0
def test_checkmate_to_simrd_analytical_cost():
    if not have_checkmate:
        return

    test_log_filename = 'data/checkmate_simrd.log'
    batch_size = 1
    with open(test_log_filename, 'w') as test_log:
        for name in MODEL_NAMES:
            try:
                model = get_keras_model(name)
                dfg = dfgraph_from_keras(model,
                                         batch_size=batch_size,
                                         loss_cpu_cost=0,
                                         loss_ram_cost=(4 * batch_size))

                g = from_dfgraph(dfg)
                rt, result, pr = run_baseline(g.get_closure(),
                                              stats=True,
                                              trace=True)
                print('Baseline simrd results for {}:'.format(name),
                      file=test_log)
                print(json.dumps(result, indent=2), file=test_log)
                print(file=test_log)
            except Exception as e:
                print('Failed for {}:'.format(name), file=test_log)
                print(traceback.format_exc(), file=test_log)
                print(file=test_log)
    print(
        'saved Checkmate -> simrd test log to [{}]'.format(test_log_filename))
Beispiel #2
0
def test_testnet_checkpointall():
    model = get_keras_model("test")
    g = dfgraph_from_keras(mod=model)
    assert g.size_fwd == 6
    scheduler_result = solve_checkpoint_all(g)
    assert scheduler_result.feasible
    assert scheduler_result.schedule_aux_data.cpu == sum(g.cost_cpu.values())
Beispiel #3
0
def test_testnet_optimalilp():
    try:
        import gurobipy as _
    except ImportError as e:
        logging.exception(e)
        logging.warning("Continuing with tests, gurobi not installed")
        return
    from remat.core.solvers.strategy_optimal_ilp import solve_ilp_gurobi

    model = get_keras_model("test")
    g = dfgraph_from_keras(mod=model)
    assert g.size_fwd == 6
    budget = sum(g.cost_ram.values()) + g.cost_ram_parameters
    scheduler_result = solve_ilp_gurobi(g, budget)
    assert scheduler_result.feasible
    assert scheduler_result.schedule_aux_data.cpu <= sum(g.cost_cpu.values())
    assert scheduler_result.schedule_aux_data.activation_ram <= sum(
        g.cost_cpu.values())
    assert scheduler_result.schedule_aux_data.peak_ram <= budget
Beispiel #4
0
from remat.core.solvers.strategy_checkpoint_all import solve_checkpoint_all, solve_checkpoint_all_ap
from remat.core.solvers.strategy_checkpoint_last import solve_checkpoint_last_node
from remat.core.solvers.strategy_chen import solve_chen_greedy, solve_chen_sqrtn
from remat.core.solvers.strategy_griewank import solve_griewank
from experiments.common.load_keras_model import get_keras_model
from remat.core.solvers.strategy_checkpoint_all import solve_checkpoint_all
from remat.tensorflow2.extraction import dfgraph_from_keras

if __name__ == "__main__":
    model = get_keras_model("test")
    g = dfgraph_from_keras(mod=model)
    scheduler_result = solve_checkpoint_all(g)
    print(scheduler_result.schedule)
        cost_model = None
    else:
        cost_model = CostModel(model_name, args.platform, log_base, quantization=5)
        cost_model.fit()

    # gen redis key
    if cost_model is None:
        key_list = ["flops", args.batch_size]
    else:
        key_list = [cost_model.platform, cost_model.quantization, args.batch_size]
    redis_cost_key = "_".join(map(str, key_list))

    # load model from Keras
    logger.info(f"Loading model {model_name}")
    model = get_keras_model(model_name, input_shape=args.input_shape)
    g = dfgraph_from_keras(model, batch_size=args.batch_size, cost_model=cost_model,
                           loss_cpu_cost=0, loss_ram_cost=(4 * args.batch_size))
                    
    result_dict = pickle.load((log_base / 'result_dict.pickle').open('rb'))
    simrd_eval_points = pickle.load((log_base / 'simrd_eval_points.pickle').open('rb'))

    simrd_results = []
    for heuristic in SIMRD_HEURISTICS:
        simrd_results.append(run_simrd(g, heuristic, simrd_eval_points, SIMRD_LIVENESS))

    # save simrd results and heuristics used
    pickle.dump(simrd_results, (log_base / 'simrd_results.pickle').open('wb'), \
        protocol=pickle.HIGHEST_PROTOCOL)
    pickle.dump(SIMRD_HEURISTICS, (log_base / 'simrd_heuristics.pickle').open('wb'), \
        protocol=pickle.HIGHEST_PROTOCOL)
Beispiel #6
0
    bs_fwd2xcost: Dict[int, int] = {}
    rg = list(
        range(args.batch_size_min, args.batch_size_max,
              args.batch_size_increment))
    for bs in tqdm(rg, desc="Event dispatch"):
        while not ray.is_initialized():
            ray.init(temp_dir="/tmp/ray_checkpoint_" +
                     str(str(uuid.uuid4())[:8]),
                     redis_password=str(uuid.uuid1()),
                     num_cpus=os.cpu_count() - 2)
        futures = []

        # load model at batch size
        g = dfgraph_from_keras(model,
                               batch_size=bs,
                               cost_model=cost_model,
                               loss_cpu_cost=0,
                               loss_ram_cost=(4 * bs))
        bs_fwd2xcost[bs] = sum(g.cost_cpu_fwd.values()) + sum(
            g.cost_cpu.values())
        bs_param_ram_cost[bs] = g.cost_ram_fixed
        render_dfgraph(g, log_base, name=model_name)

        # run constant baselines
        result_dict[bs][SolveStrategy.CHEN_SQRTN_NOAP] = [
            solve_chen_sqrtn(g, False)
        ]
        futures.extend([
            ray.remote(num_cpus=1)(solve_checkpoint_all).remote(g),
            ray.remote(num_cpus=1)(solve_checkpoint_all_ap).remote(g),
            ray.remote(num_cpus=1)(solve_checkpoint_last_node).remote(g),