Beispiel #1
0
def main():
    args = DemoOptions().parse()
    args.use_smplx = True

    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    assert torch.cuda.is_available(), "Current version only supports GPU"

    hand_bbox_detector = HandBboxDetector('third_view', device)

    #Set Mocap regressor
    body_mocap = BodyMocap(args.checkpoint_body_smplx,
                           args.smpl_dir,
                           device=device,
                           use_smplx=True)
    hand_mocap = HandMocap(args.checkpoint_hand, args.smpl_dir, device=device)

    # Set Visualizer
    if args.renderer_type in ['pytorch3d', 'opendr']:
        from renderer.screen_free_visualizer import Visualizer
    else:
        from renderer.visualizer import Visualizer
    visualizer = Visualizer(args.renderer_type)

    run_frank_mocap(args, hand_bbox_detector, body_mocap, hand_mocap,
                    visualizer)
Beispiel #2
0
def main(args):
    args.use_smplx = True

    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    assert torch.cuda.is_available(), "Current version only supports GPU"

    #Set Bbox detector
    bbox_detector = HandBboxDetector(args.view_type, device)

    # Set Mocap regressor
    hand_mocap = HandMocap(args.checkpoint_hand, args.smpl_dir, device=device)

    # Set Visualizer
    if args.renderer_type in ['pytorch3d', 'opendr']:
        from renderer.screen_free_visualizer import Visualizer
    else:
        from renderer.visualizer import Visualizer
    visualizer = Visualizer(args.renderer_type)

    args.out_dir = os.path.join(
        "/output/annotations/",
        args.input_path.replace("/data/sessions_processed/final_dataset/",
                                "").split(".")[0], f"hand_bboxes_0.2")
    print(args.out_dir)
    assert os.path.exists(args.out_dir)

    # run
    run_hand_mocap(args, bbox_detector, hand_mocap, visualizer)
Beispiel #3
0
 def __init__(self):
     self.args = DemoOptions().parse()
     self.args.use_smplx = True
     self.args.save_pred_pkl = True
     self.device = torch.device(
         'cuda') if torch.cuda.is_available() else torch.device('cpu')
     self.bbox_detector = HandBboxDetector(self.args.view_type, self.device)
     self.hand_mocap = HandMocap(self.args.checkpoint_hand,
                                 self.args.smpl_dir,
                                 device=self.device)
     self.visualizer = Visualizer(self.args.renderer_type)
Beispiel #4
0
def run_from_list(args):
    assert os.path.exists(args.list)

    with open(args.list, "r") as f:
        lines = f.readlines()

    args.save_frame = False
    args.no_video_out = True
    args.use_smplx = True

    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    assert torch.cuda.is_available(), "Current version only supports GPU"

    #Set Bbox detector
    bbox_detector = HandBboxDetector(args.view_type, device)

    # Set Mocap regressor
    hand_mocap = HandMocap(args.checkpoint_hand, args.smpl_dir, device=device)

    # Set Visualizer
    if args.renderer_type in ['pytorch3d', 'opendr']:
        from renderer.screen_free_visualizer import Visualizer
    else:
        from renderer.visualizer import Visualizer
    visualizer = Visualizer(args.renderer_type)

    for i in range(1, len(lines)):
        t0 = time.time()
        path = lines[i].replace("\n", "")
        session, task = (path.split(".")[0]).split("/")[-2:]
        args.input_path = path
        args.out_dir = f"/output/annotations/{session}/{task}/hand_bboxes_0.2/"

        if not args.replace and os.path.exists(
                os.path.join(args.out_dir, MARKER)):
            print(
                f"[{i}/{len(lines)-1}] Landmarks already extracted for this video -> '{args.out_dir}'"
            )
            continue

        print(
            f"[{i}/{len(lines)-1}] Extracting hand landmarks of '{session} - {task}'"
        )
        # run
        run_hand_mocap(args, bbox_detector, hand_mocap, visualizer)
        print(f"[FINISHED] Time: {time.time() - t0} s")
Beispiel #5
0
def main():
    args = DemoOptions().parse()

    # load pkl files
    pkl_files = gnu.get_all_files(args.pkl_dir, ".pkl", "full")

    # get smpl type
    demo_type, smpl_type = __get_data_type(pkl_files)

    # get smpl model
    smpl_model = __get_smpl_model(demo_type, smpl_type)

    # Set Visualizer
    assert args.renderer_type in ['pytorch3d', 'opendr'], \
        f"{args.renderer_type} not implemented yet."
    from renderer.screen_free_visualizer import Visualizer
    visualizer = Visualizer(args.renderer_type)

    # load smpl model
    visualize_prediction(args, demo_type, smpl_type, smpl_model, pkl_files,
                         visualizer)
def main():
    args = DemoOptions().parse()
    args.use_smplx = True

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")



    #Set Mocap regressor
    if not torch.cuda.is_available():
        hand_bbox_detector = HandBboxDetector_cpu("third_view", device)
        body_mocap = BodyMocap_cpu(args.checkpoint_body_smplx, args.smpl_dir, device = device, use_smplx= True)
        hand_mocap = HandMocap_cpu(args.checkpoint_hand, args.smpl_dir, device = device)
        # Set Visualizer
        if args.renderer_type in ['pytorch3d', 'opendr']:
            from renderer.screen_free_visualizer import Visualizer
        else:
            from renderer.visualizer import Visualizer
        visualizer = Visualizer(args.renderer_type)        
        run_frank_mocap_cpu(args, hand_bbox_detector, body_mocap, hand_mocap,visualizer)
    else:
        print("This is the CPU beta version")
Beispiel #7
0
def main():
    args = DemoOptions().parse()

    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    assert torch.cuda.is_available(), "Current version only supports GPU"

    # Set bbox detector
    body_bbox_detector = BodyPoseEstimator()

    # Set mocap regressor
    use_smplx = args.use_smplx
    checkpoint_path = args.checkpoint_body_smplx if use_smplx else args.checkpoint_body_smpl
    print("use_smplx", use_smplx)
    body_mocap = BodyMocap(checkpoint_path, args.smpl_dir, device, use_smplx)

    # Set Visualizer
    if args.renderer_type in ['pytorch3d', 'opendr']:
        from renderer.screen_free_visualizer import Visualizer
    else:
        from renderer.visualizer import Visualizer
    visualizer = Visualizer(args.renderer_type)
  
    run_body_mocap(args, body_bbox_detector, body_mocap, visualizer)