Beispiel #1
0
def plot_y(output_data, meta_data):

    fig, ax1 = plt.subplots()
    time_grid = output_data["time grid"]
    ax1.plot(time_grid,
             output_data["y bar approx"],
             label="Approximate solution (Method A)",
             color='r')
    ax1.plot(time_grid,
             output_data["y_runge_kutta"],
             label="ODE system approx (Method B)",
             color='g')

    error_y = 3 * output_data["y std mc"] / np.sqrt(
        meta_data["number_scrambles"])
    upper = output_data["y bar mc"] + error_y
    lower = output_data["y bar mc"] - error_y

    ax1.plot(time_grid,
             output_data["y bar mc"],
             label="Monte Carlo Simulation",
             color='b')
    ax1.fill_between(time_grid,
                     lower,
                     upper,
                     label="3 std conf level",
                     alpha=0.28)

    ax1.set_xlabel("time (years)")
    ax1.set_ylabel(r"$\mathbb{E}^A[y(t)]$")

    title = "{}Y{}Y Swap, $\mathbb{{E}}^A[y(t)]$ approximation".format(
        meta_data["swap_T0"], meta_data["swap_TN"] - meta_data["swap_T0"])
    ax1.set_title(title)
    ax1.legend()

    file_name = r"{}-y_approx_{}Y{}Y_swap_kappa_{}_lambda_{:.3f}_alpha_{:.3f}_beta_{:.3f}".format(
        meta_data["file_pre"], meta_data["swap_T0"],
        meta_data["swap_TN"] - meta_data["swap_T0"], meta_data["kappa"],
        meta_data["lambda value"], meta_data["alpha"], meta_data["beta"])
    file_name += "." + outp_file_format
    output_file = os.path.join(output_plots_approx_solution, file_name)

    file_path = get_nonexistant_path(output_file)
    savefig_metadata(file_path, outp_file_format, fig, meta_data)
Beispiel #2
0
def adi_bond_report():

    output_path = os.path.join(output_data_raw_finite_difference,
                               date_timestamp)

    curve_rate = 0.01
    maturity_grid = [30]
    kappa_grid = [0.03]
    theta = 1 / 2

    initial_curve = get_mock_yield_curve_const(rate=curve_rate)

    vola_parameters = [(i, curve_rate, j) for i in [0.05, 0.1, 0.2, 0.4]
                       for j in [0.1, 0.3, 0.5, 0.7, 0.9]]
    vola_grid_df = pd.DataFrame(vola_parameters,
                                columns=["lambda", "alpha", "beta"])

    finite_difference_parameter = [(100, 150, 20), (300, 400, 80)]

    #finite_difference_parameter = [(100, 150, 20)]

    finite_difference_grid_df = pd.DataFrame(
        finite_difference_parameter,
        columns=["t_grid_size", "x_grid_size", "y_grid_size"])

    output_path = get_nonexistant_path(output_path)

    vola_grid_df = vola_grid_df.loc[(vola_grid_df["lambda"] == 0.4)
                                    & (vola_grid_df["beta"] == 0.35)]

    for maturity in maturity_grid:
        for kappa in kappa_grid:
            bond = Bond(maturity)
            bond_pricer = BondPricer(initial_curve, kappa)
            for index, vola_grid_row in vola_grid_df.iterrows():
                loca_vola = LinearLocalVolatility.from_const(
                    maturity, vola_grid_row["lambda"], vola_grid_row["alpha"],
                    vola_grid_row["beta"])
                for index, finite_difference_grid_row in finite_difference_grid_df.iterrows(
                ):

                    x_grid_size = finite_difference_grid_row["x_grid_size"]
                    y_grid_size = finite_difference_grid_row["y_grid_size"]
                    t_grid_size = finite_difference_grid_row["t_grid_size"]

                    t_min = 0
                    t_max = maturity

                    x_min, x_max = calculate_x_boundaries2(t_max,
                                                           loca_vola,
                                                           alpha=3)
                    x_min, x_max = calculate_x_boundaries3(t_max,
                                                           kappa,
                                                           loca_vola,
                                                           alpha=3)
                    u_min, u_max = calculate_u_boundaries(t_max,
                                                          kappa,
                                                          loca_vola,
                                                          alpha=4)

                    mesher = Mesher2d()
                    mesher.create_mesher_2d(t_min, t_max, t_grid_size, x_min,
                                            x_max, x_grid_size, u_min, u_max,
                                            y_grid_size)

                    adi_runner = AdiRunner(theta, kappa, initial_curve,
                                           loca_vola, mesher)

                    bond_t0 = pd.DataFrame(
                        adi_runner.run_adi(bond, bond_pricer))

                    output_file = os.path.join(output_path,
                                               "bond_price_fd.hdf")
                    file_path = get_nonexistant_path(output_file)

                    meta_data = {
                        "x_grid_size": int(x_grid_size),
                        "y_grid_size": int(y_grid_size),
                        "maturity": maturity,
                        "t_grid_size": int(t_grid_size),
                        "vola_lambda": vola_grid_row["lambda"],
                        "vola_alpha": vola_grid_row["alpha"],
                        "vola_beta": vola_grid_row["beta"],
                        "curve_rate": curve_rate,
                        "kappa": kappa
                    }

                    meta_data = pd.DataFrame(meta_data, index=[0])
                    bond_t0.to_hdf(file_path, key="data", complevel=5)
                    meta_data.to_hdf(file_path, key="metadata", complevel=5)

                    pd.DataFrame(mesher.xmesh).to_hdf(file_path,
                                                      key='xmesh',
                                                      complevel=5)
                    pd.DataFrame(mesher.umesh).to_hdf(file_path,
                                                      key='ymesh',
                                                      complevel=5)

                    pd.DataFrame(mesher.xgrid).to_hdf(file_path,
                                                      key='xgrid',
                                                      complevel=5)
                    pd.DataFrame(mesher.ugrid).to_hdf(file_path,
                                                      key='ygrid',
                                                      complevel=5)
def plot_all(all_results, output_path):

    for swap, group in all_results.groupby(["expiry", "maturity"]):
        plot_implied_vola(group, output_path)
        pass


fd_file = os.path.join(output_data_raw, "finite_difference", "swaption",
                       "2021_01_08")
mc_file = os.path.join(output_data_raw, "monte_carlo", "swaption",
                       "2021_01_07")
approx_file = os.path.join(output_data_raw, "approximation",
                           "piterbarg_swaption_approx", "2021_01_11", "result",
                           'swaption_approximation-2.hdf')
approx_file = os.path.join(output_data_raw, "approximation",
                           "piterbarg_swaption_approx", "2021_01_10", "result",
                           'swaption_approximation.hdf')

output_swaption = os.path.join(output_plots_swaption)

all_results = load_swaption_data(approx_file, mc_file, fd_file)

output_path = os.path.join(output_swaption, date_timestamp)
output_path = get_nonexistant_path(output_path)

try:
    os.mkdir(output_path)
except:
    pass
plot_all(all_results, output_path)
Beispiel #4
0
def mc_swaption_report():

    output_path = os.path.join(output_data_raw_monte_carlo, date_timestamp)
    output_file = os.path.join(output_path, "swaption_price_mc.hdf")
    file_path = get_nonexistant_path(output_file)

    #random_number_generator_type = "sobol"
    random_number_generator_type = "normal"

    curve_rate = 0.06
    kappa_grid = [0.03]

    initial_curve = get_mock_yield_curve_const(rate=curve_rate)

    vola_parameters = [(i, curve_rate, j) for i in [0.05, 0.2, 0.4, 0.5] for j in [0.05, 0.1, 0.3, 0.7]]

    vola_parameters = [(i, curve_rate, j) for i in [0.4] for j in [0.3]]

    vola_grid_df = pd.DataFrame(vola_parameters, columns=["lambda", "alpha", "beta"])

    coupon_grid = [0, +0.0025, -0.0025, +0.005, -0.005, +0.01, -0.01, 0.015, -0.015, 0.02, -0.02, 0.025, -0.025]
    #vola_grid_df = vola_grid_df.iloc[[10]]

    number_paths = np.power(2, 15)
    number_time_steps = np.power(2, 11)
    swap_ls = [(1, 6), (5, 10), (10, 20), (20, 30), (25, 30)]
    swap_ls = [(5, 10),  (10, 20), (20, 30)]

    swap_ls = [(5, 10)]
    #swap_ls = [(1, 11)]

    for number_paths in [np.power(2,12), np.power(2, 13), np.power(2, 14), np.power(2, 15), np.power(2, 16), np.power(2, 17)]:
        for swap_exp_mat in swap_ls:
            print("swap: ", swap_exp_mat)
            expiry, maturity = swap_exp_mat
            for kappa in kappa_grid:
                swap_pricer = SwapPricer(initial_curve, kappa)
                swaption_pricer = SwaptionPricer(swap_pricer)
                swap = Swap(expiry, maturity, 0.5)
                atm_swap_price = swap_pricer.price(swap, 0, 0, 0)
                strike_grid = [atm_swap_price+coupon for coupon in coupon_grid]
                for index, vola_grid_row in vola_grid_df.iterrows():
                    loca_vola = LinearLocalVolatility.from_const(maturity, vola_grid_row["lambda"],
                                                                 vola_grid_row["alpha"], vola_grid_row["beta"])
                    bond_measure = swap.bond_T0
                    process_simulator = ProcessSimulatorTerminalMeasure(number_paths, number_time_steps,
                                                                 expiry / number_time_steps,
                                                                 random_number_generator_type, bond_measure,
                                                                        swap_pricer.bond_pricer, nr_processes=6,
                                                                        n_scrambles=64)

                    result_obj = process_simulator.simulate_xy(kappa, loca_vola, parallel_simulation=True)

                    for strike in strike_grid:
                        swaption = Swaption(expiry, strike, swap)

                        swaption_value_paths = monte_carlo_pricer_terminal_measure(result_obj, swaption, swaption_pricer)
                        last_mc_time = result_obj.time_grid[-1]
                        # swaption_value_paths_cv = apply_control_variate(last_mc_time, result_obj.x[:,-1], result_obj.y[:,-1],
                        #                                 swaption_value_paths, swap.bond_TN, swap_pricer.bond_pricer, swap_pricer.initial_curve)
                        swaption_value_paths_cv2 = apply_control_variate_annuity(last_mc_time, result_obj.x[:, -1],
                                                                        result_obj.y[:, -1], swaption_value_paths,
                                                                        swap.annuity, swap_pricer.annuity_pricer,
                                                                         swap_pricer.annuity_pricer.bond_pricer.initial_curve)

                        swaption_value_mean = swaption_value_paths.mean()
                        std, swaption_value_error = result_obj.calculate_std_error(swaption_value_paths, result_obj.n_scrambles)

                        # swaption_value_mean_cv = swaption_value_paths_cv.mean()
                        # std, swaption_value_error_cv = result_obj.calculate_std_error(swaption_value_paths_cv, result_obj.n_scrambles)

                        swaption_value_mean_cv = swaption_value_paths_cv2.mean()
                        std, swaption_value_error_cv = result_obj.calculate_std_error(swaption_value_paths_cv2,
                                                                                      result_obj.n_scrambles)

                        bond_pricer = swap_pricer.bond_pricer
                        output_data = {"number_paths": number_paths, "number_time_steps": number_time_steps,
                                       "random_number_generator_type": random_number_generator_type, "expiry": expiry,
                                       "maturity": maturity, "strike": strike, "atm strike": atm_swap_price,
                                       "moneyness": strike-atm_swap_price, "vola_lambda": vola_grid_row["lambda"],
                                       "vola_alpha": vola_grid_row["alpha"], "vola_beta": vola_grid_row["beta"],
                                       "curve_rate": curve_rate, "kappa": kappa, "swaption value": swaption_value_mean,
                                       "swaption value error": swaption_value_error,
                                       "swaption value cv": swaption_value_mean_cv,
                                       "swaption value error cv": swaption_value_error_cv,

                                       "implied_vola": find_implied_black_vola(swaption_value_mean, swaption,
                                                                               swap_pricer, bond_pricer),
                                       "implied_vola_max": find_implied_black_vola(swaption_value_mean+swaption_value_error,
                                                                                   swaption, swap_pricer, bond_pricer),
                                       "implied_vola_min": find_implied_black_vola(swaption_value_mean-swaption_value_error,
                                                                                   swaption, swap_pricer, bond_pricer),
                                       "implied_vola_cv": find_implied_black_vola(swaption_value_mean_cv, swaption,
                                                                               swap_pricer, bond_pricer),
                                       "implied_vola_cv_max": find_implied_black_vola(swaption_value_mean_cv + swaption_value_error_cv, swaption,
                                                                               swap_pricer, bond_pricer),
                                       "implied_vola_cv_min": find_implied_black_vola(swaption_value_mean_cv - swaption_value_error_cv, swaption,
                                                                               swap_pricer, bond_pricer)}

                        output_df_new = pd.DataFrame(output_data, index=[0])

                        try:
                            ouput_df_old = pd.read_hdf(file_path, key="output_data")
                        except:
                            ouput_df_old = pd.DataFrame()

                        output_df_new = pd.concat([ouput_df_old, output_df_new])
                        output_df_new.to_hdf(file_path, key="output_data", complevel=9)
def calculate_swaption_prices():

    output_path = os.path.join(output_data_raw_approx, date_timestamp,
                               "result")
    output_file = os.path.join(output_path, "swaption_approximation.hdf")
    file_path = get_nonexistant_path(output_file)

    grid_size = 2**12 + 1
    swap_freq = 0.5
    curve_rate = 0.06

    initial_curve = LiborCurve.from_constant_rate(curve_rate)

    kappa_grid = [0.03]

    vola_parameters = [(i, curve_rate, j) for i in [0.6, 0.8]
                       for j in [0.05, 0.2]]
    vola_grid_df = pd.DataFrame(vola_parameters,
                                columns=["lambda", "alpha", "beta"])
    vola_grid_df = vola_grid_df.iloc[[0, 3]]

    #coupon_grid = [0, +0.0025, -0.0025, +0.005, -0.005, +0.01, -0.01, 0.015, -0.015, 0.02, -0.02, 0.025, -0.025]

    XYApproximator = PitergargDiscreteXY
    XYApproximator = RungeKuttaApproxXY

    swap_ls = [(20, 21)]
    coupon_grid = [0, +0.005, -0.005, +0.01, -0.01, 0.015, -0.015]
    #vola_grid_df = vola_grid_df.iloc[9:10]

    for swap_T0_TN in swap_ls:
        print(swap_T0_TN)
        T0, TN = swap_T0_TN
        for kappa in kappa_grid:
            swap_pricer = SwapPricer(initial_curve, kappa)
            swap = Swap(T0, TN, 1 / 2)
            for index, vola_grid_row in vola_grid_df.iterrows():
                sigma_r = LinearLocalVolatility.from_const(
                    swap.TN, vola_grid_row["lambda"], vola_grid_row["alpha"],
                    vola_grid_row["beta"])

                swap = Swap(T0, TN, swap_freq)

                atm_swap_price = swap_pricer.price(swap, 0, 0, 0)
                strike_grid = [
                    atm_swap_price + coupon for coupon in coupon_grid
                ]
                #strike_grid = [0.01, 0.015, 0.02, 0.025, 0.03]

                xy_calculator = XYApproximator(grid_size, swap_pricer, sigma_r,
                                               swap)
                integration_approx = DiscreteParameterAveraging(
                    grid_size, swap_pricer, sigma_r, swap, xy_calculator)
                lambda_avg, beta_avg = integration_approx.calculate_average_param(
                )

                for strike in strike_grid:
                    swaption = Swaption(T0, strike, swap)
                    swaption_value, black_implied_vola = lognormalimpliedvola(
                        swaption, swap_pricer, lambda_avg, beta_avg)

                    output_data = pd.DataFrame({
                        'expiry': [T0],
                        "maturity": [TN],
                        "atm strike":
                        atm_swap_price,
                        "swaption_value": [swaption_value],
                        "kappa": [kappa],
                        "vola_lambda": [vola_grid_row["lambda"]],
                        "vola_alpha": [vola_grid_row["alpha"]],
                        "vola_beta": [vola_grid_row['beta']],
                        "strike": [strike],
                        'moneyness': [strike - atm_swap_price],
                        "curve_rate": [curve_rate],
                        "implied_black_vola": [black_implied_vola],
                        'integration_grid': [grid_size],
                        "xy_approximation": [str(xy_calculator)]
                    })
                    try:
                        all_output_data = pd.read_hdf(file_path, key="data")
                    except:
                        all_output_data = pd.DataFrame()
                    all_output_data = pd.concat([all_output_data, output_data])
                    all_output_data.to_hdf(file_path, key="data", complevel=9)
Beispiel #6
0
def adi_swaption_report():

    output_path = os.path.join(output_data_raw_finite_difference, date_timestamp)

    curve_rate = 0.06
    kappa_grid = [0.03]
    theta = 1/2

    initial_curve = get_mock_yield_curve_const(rate=curve_rate)

    finite_difference_parameter = [(100, 150, 10), (400, 800, 60)]

    finite_difference_parameter = [(150, 200, 80)]
    #finite_difference_parameter = [(400, 800, 60)]

    #finite_difference_parameter = [(800, 1000, 100)]
    finite_difference_parameter = [(50, 100, 10), (100, 150, 20), (150, 200, 40), (200, 300, 60), (300, 400, 80)]
    finite_difference_parameter = [(400, 600, 100)]
    #finite_difference_parameter = [(600, 800, 120)]
    #finite_difference_parameter = [(100, 150, 20), (150, 200, 40), (300, 400, 80), (400, 600, 100)]

    #finite_difference_parameter = [ (400, 600, 100)]

    finite_difference_parameter = [(100, 150, 20), (150, 200, 40), (300, 400, 80), (400, 600, 100)]
    #finite_difference_parameter = [ (400, 600, 100)]
    finite_difference_parameter = [(300, 400, 80)]
    #finite_difference_parameter = [(150, 200, 40)]

    finite_difference_grid_df = pd.DataFrame(finite_difference_parameter, columns=["t_grid_size", "x_grid_size", "y_grid_size"])
    output_path = get_nonexistant_path(output_path)
    vola_parameters = [(i, curve_rate, j) for i in [0.6, 0.8] for j in [0.05, 0.2]]
    vola_grid_df = pd.DataFrame(vola_parameters, columns=["lambda", "alpha", "beta"])

    #coupon_grid = [0, +0.0025, -0.0025, +0.005, -0.005, +0.01, -0.01, 0.015, -0.015, 0.02, -0.02, 0.025, -0.025]

    #swap_ls = [(1, 6), (5, 10), (10, 20), (20, 30), (25, 30)]

    #swap_ls = [(1,6), (5, 10), (10,20)]

    swap_ls = [(20, 21)]
    coupon_grid = [0, +0.005, -0.005, +0.01, -0.01, 0.015, -0.015]
    #coupon_grid = [0]

    #coupon_grid = [0]
    #swap_ls = [(5, 10)]
    #finite_difference_grid_df = finite_difference_grid_df[:-1]

    vola_grid_df = vola_grid_df.iloc[[0, 3]]

    for swap_exp_mat in swap_ls:
        expiry, maturity = swap_exp_mat
        for kappa in kappa_grid:
            swap_pricer = SwapPricer(initial_curve, kappa)
            swaption_pricer = SwaptionPricer(swap_pricer)
            swap = Swap(expiry, maturity, 0.5)
            atm_swap_price = swap_pricer.price(swap, 0, 0, 0)
            strike_grid = [atm_swap_price+coupon for coupon in coupon_grid]
            #strike_grid = [0.01, 0.015, 0.02, 0.025, 0.03]

            for strike in strike_grid:
                swaption = Swaption(expiry, strike, swap)
                for index, vola_grid_row in vola_grid_df.iterrows():
                    loca_vola = LinearLocalVolatility.from_const(maturity, vola_grid_row["lambda"], vola_grid_row["alpha"], vola_grid_row["beta"])
                    for index, finite_difference_grid_row in finite_difference_grid_df.iterrows():

                        x_grid_size = finite_difference_grid_row["x_grid_size"]
                        y_grid_size = finite_difference_grid_row["y_grid_size"]
                        t_grid_size = finite_difference_grid_row["t_grid_size"]

                        t_min = 0
                        t_max = expiry

                        x_min, x_max = calculate_x_boundaries2(t_max, loca_vola, alpha=3)
                        x_min, x_max = calculate_x_boundaries3(expiry, kappa, loca_vola, alpha=4)
                        y_min, y_max = calculate_u_boundaries(t_max, kappa, loca_vola, alpha=4)

                        mesher = Mesher2d()
                        mesher.create_mesher_2d(t_min, t_max, t_grid_size, x_min, x_max, x_grid_size, y_min, y_max,
                                                y_grid_size)

                        adi_runner = AdiRunner(theta, kappa, initial_curve, loca_vola, mesher)

                        swaption_t0 = pd.DataFrame(adi_runner.run_adi(swaption, swaption_pricer))

                        output_file = os.path.join(output_path, "swaption_price_fd.hdf")
                        file_path = get_nonexistant_path(output_file)

                        swaption_t0_x0_y0 = extract_x0_result(swaption_t0.values, mesher.xgrid, mesher.ugrid)
                        implied_black_vola = find_implied_black_vola(swaption_t0_x0_y0, swaption, swap_pricer, swap_pricer.bond_pricer)

                        meta_data = {"expiry": expiry, "maturity": maturity, "strike": strike,
                                     "atm strike": atm_swap_price, "moneyness": strike - atm_swap_price,
                                     "x_grid_size": int(x_grid_size), "y_grid_size": int(y_grid_size),
                                      "t_grid_size": int(t_grid_size),
                                     "vola_lambda": vola_grid_row["lambda"], "vola_alpha": vola_grid_row["alpha"],
                                     "vola_beta": vola_grid_row["beta"], "curve_rate": curve_rate, "kappa": kappa,
                                     "swaption_value": swaption_t0_x0_y0, "implied_black_vola": implied_black_vola}

                        meta_data = pd.DataFrame(meta_data, index=[0])
                        swaption_t0.to_hdf(file_path, key="data", complevel=5)
                        meta_data.to_hdf(file_path, key="metadata", complevel=5)

                        print(meta_data)

                        pd.DataFrame(mesher.xmesh).to_hdf(file_path, key='xmesh', complevel=5)
                        pd.DataFrame(mesher.umesh).to_hdf(file_path, key='ymesh', complevel=5)

                        pd.DataFrame(mesher.xgrid).to_hdf(file_path, key='xgrid', complevel=5)
                        pd.DataFrame(mesher.ugrid).to_hdf(file_path, key='ygrid', complevel=5)