Beispiel #1
0
def init_matrices(ens, mask, obs, rng):
    state_size = 2
    report_step = 5
    meas_data = MeasData(mask)
    meas_block = meas_data.addBlock("OBS", report_step, len(obs))

    A = Matrix(state_size, mask.countEqual(True))
    active_iens = 0
    for iens, params in enumerate(ens):
        if mask[iens]:
            state = forward_model(params)
            meas_block[0, iens] = measure(state)

            A[0, active_iens] = params[0]
            A[1, active_iens] = params[1]

            active_iens += 1

    S = meas_data.createS()

    obs_data = ObsData()
    obs_block = obs_data.addBlock("OBS", 1)
    for iobs, obs_value in enumerate(obs):
        obs_block[iobs] = obs_value

    R = obs_data.createR()
    dObs = obs_data.createDObs()
    E = obs_data.createE(rng, meas_data.getActiveEnsSize())
    D = obs_data.createD(E, S)

    obs_data.scale(S, E=E, D=D, R=R, D_obs=dObs)
    return (A, S, E, D, R, dObs)
Beispiel #2
0
    def calculatePrincipalComponent(self,
                                    fs,
                                    local_obsdata,
                                    truncation_or_ncomp=3):
        pc = Matrix(1, 1)
        pc_obs = Matrix(1, 1)
        singular_values = DoubleVector()

        state_map = fs.getStateMap()
        ens_mask = BoolVector(False, self.ert().getEnsembleSize())
        state_map.selectMatching(ens_mask, RealizationStateEnum.STATE_HAS_DATA)
        active_list = ens_mask.createActiveList()

        if len(ens_mask) > 0:
            meas_data = MeasData(ens_mask)
            obs_data = ObsData()

            self.ert().getObservations().getObservationAndMeasureData(
                fs, local_obsdata, active_list, meas_data, obs_data)

            meas_data.deactivateZeroStdSamples(obs_data)

            active_size = len(obs_data)

            if active_size > 0:
                S = meas_data.createS()
                D_obs = obs_data.createDObs()

                truncation, ncomp = self.truncationOrNumberOfComponents(
                    truncation_or_ncomp)

                obs_data.scale(S, D_obs=D_obs)
                EnkfLinalg.calculatePrincipalComponents(
                    S, D_obs, truncation, ncomp, pc, pc_obs, singular_values)
                if self.__prior_singular_values is None:
                    self.__prior_singular_values = singular_values
                else:
                    for row in range(pc.rows()):
                        factor = singular_values[
                            row] / self.__prior_singular_values[row]
                        pc.scaleRow(row, factor)
                        pc_obs.scaleRow(row, factor)

                return PcaPlotData(local_obsdata.getName(), pc, pc_obs,
                                   singular_values)
        return None