Beispiel #1
0
def _default_config_for_model_name(model_name):
    """Returns the default hparams config for each supported model."""

    if model_name == "nasnet_cifar":
        return nasnet.cifar_config()
    if model_name == "nasnet_mobile":
        return nasnet.mobile_imagenet_config()
    if model_name == "nasnet_large":
        return nasnet.large_imagenet_config()
    raise ValueError("Unsupported model name: {}".format(model_name))
Beispiel #2
0
 def testOverrideHParamsLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     config = nasnet.large_imagenet_config()
     config.set_hparam('data_format', 'NCHW')
     with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
         _, end_points = nasnet.build_nasnet_large(inputs,
                                                   num_classes,
                                                   config=config)
     self.assertListEqual(end_points['Stem'].shape.as_list(),
                          [batch_size, 336, 42, 42])
Beispiel #3
0
 def testNoAuxHeadLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = 1000
     for use_aux_head in (True, False):
         tf.reset_default_graph()
         inputs = tf.random_uniform((batch_size, height, width, 3))
         tf.train.create_global_step()
         config = nasnet.large_imagenet_config()
         config.set_hparam('use_aux_head', int(use_aux_head))
         with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
             _, end_points = nasnet.build_nasnet_large(inputs,
                                                       num_classes,
                                                       config=config)
         self.assertEqual('AuxLogits' in end_points, use_aux_head)
    def _extract_box_classifier_features(self, proposal_feature_maps, scope):
        """Extracts second stage box classifier features.

    This function reconstructs the "second half" of the NASNet-A
    network after the part defined in `_extract_proposal_features`.

    Args:
      proposal_feature_maps: A 4-D float tensor with shape
        [batch_size * self.max_num_proposals, crop_height, crop_width, depth]
        representing the feature map cropped to each proposal.
      scope: A scope name.

    Returns:
      proposal_classifier_features: A 4-D float tensor with shape
        [batch_size * self.max_num_proposals, height, width, depth]
        representing box classifier features for each proposal.
    """
        del scope

        # Note that we always feed into 2 layers of equal depth
        # where the first N channels corresponds to previous hidden layer
        # and the second N channels correspond to the final hidden layer.
        hidden_previous, hidden = tf.split(proposal_feature_maps, 2, axis=3)

        # Note that what follows is largely a copy of build_nasnet_large() within
        # nasnet.py. We are copying to minimize code pollution in slim.

        # TODO(shlens,skornblith): Determine the appropriate drop path schedule.
        # For now the schedule is the default (1.0->0.7 over 250,000 train steps).
        hparams = nasnet.large_imagenet_config()
        if not self._is_training:
            hparams.set_hparam('drop_path_keep_prob', 1.0)

        # Calculate the total number of cells in the network
        # -- Add 2 for the reduction cells.
        total_num_cells = hparams.num_cells + 2
        # -- And add 2 for the stem cells for ImageNet training.
        total_num_cells += 2

        normal_cell = nasnet_utils.NasNetANormalCell(
            hparams.num_conv_filters, hparams.drop_path_keep_prob,
            total_num_cells, hparams.total_training_steps)
        reduction_cell = nasnet_utils.NasNetAReductionCell(
            hparams.num_conv_filters, hparams.drop_path_keep_prob,
            total_num_cells, hparams.total_training_steps)
        with arg_scope([slim.dropout, nasnet_utils.drop_path],
                       is_training=self._is_training):
            with arg_scope([slim.batch_norm],
                           is_training=self._train_batch_norm):
                with arg_scope([
                        slim.avg_pool2d, slim.max_pool2d, slim.conv2d,
                        slim.batch_norm, slim.separable_conv2d,
                        nasnet_utils.factorized_reduction,
                        nasnet_utils.global_avg_pool,
                        nasnet_utils.get_channel_index,
                        nasnet_utils.get_channel_dim
                ],
                               data_format=hparams.data_format):

                    # This corresponds to the cell number just past 'Cell_11' used by
                    # by _extract_proposal_features().
                    start_cell_num = 12
                    # Note that this number equals:
                    #  start_cell_num + 2 stem cells + 1 reduction cell
                    true_cell_num = 15

                    with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
                        net = _build_nasnet_base(hidden_previous,
                                                 hidden,
                                                 normal_cell=normal_cell,
                                                 reduction_cell=reduction_cell,
                                                 hparams=hparams,
                                                 true_cell_num=true_cell_num,
                                                 start_cell_num=start_cell_num)

        proposal_classifier_features = net
        return proposal_classifier_features