Beispiel #1
0
def test_build_data_wrong_cap_pot_thresholds_len():
    technologies = ["pv_utility", "wind_offshore"]
    regions = ["BENELUX"]
    timeslice = ['2015-01-01T00:00', '2015-01-01T23:00']
    resite = Resite(regions, technologies, timeslice, 0.5)
    with pytest.raises(AssertionError):
        resite.build_data(True, [0.01])
Beispiel #2
0
def test_build_data_two_regions():
    technologies = ["pv_utility", "wind_offshore"]
    regions = ["BENELUX", "PT"]
    timeslice = ['2015-01-01T00:00', '2015-01-01T23:00']
    timestamps = pd.date_range(timeslice[0], timeslice[1], freq='1H')
    nb_sites = [72, 49]
    resite = Resite(regions, technologies, timeslice, 0.5)
    resite.build_data(True)
    build_data_test(resite, technologies, regions, timestamps, nb_sites)
Beispiel #3
0
def test_build_model():
    technologies = ["pv_utility", "wind_offshore"]
    regions = ["BENELUX"]
    timeslice = ['2015-01-01T00:00', '2015-01-01T23:00']
    resite = Resite(regions, technologies, timeslice, 0.5)
    resite.build_data(True)
    resite.build_model("pyomo", "max_generation", {"nb_sites_per_region": [5]},
                       False)
    for attr in ["instance", "modelling", "formulation", "formulation_params"]:
        assert hasattr(resite, attr)
Beispiel #4
0
def test_solve_model():
    technologies = ["pv_utility", "wind_offshore"]
    regions = ["BENELUX"]
    timeslice = ['2015-01-01T00:00', '2015-01-01T23:00']
    resite = Resite(regions, technologies, timeslice, 0.5)
    resite.build_data(True)
    resite.build_model("pyomo", "max_generation", {"nb_sites_per_region": [5]},
                       False)
    resite.solve_model()
    for attr in ["objective", "y_ds", "sel_tech_points_dict"]:
        assert hasattr(resite, attr)
    for tech_point in resite.y_ds.index:
        assert tech_point in resite.tech_points_tuples.tolist()
    for tech in resite.sel_tech_points_dict:
        assert tech in technologies
        points = resite.sel_tech_points_dict[tech]
        for point in points:
            assert (tech, point[0],
                    point[1]) in resite.tech_points_tuples.tolist()
Beispiel #5
0
def test_init():
    resite = Resite(["BENELUX"], ["wind_onshore"],
                    ['2015-01-01T00:00', '2015-01-01T23:00'], 0.5)
    for attr in ["technologies", "regions", "timestamps", "spatial_res"]:
        assert hasattr(resite, attr)
Beispiel #6
0
def add_generators_using_siting(net: pypsa.Network, technologies: List[str],
                                region: str, siting_params: Dict[str, Any],
                                use_ex_cap: bool = True, limit_max_cap: bool = True,
                                output_dir: str = None) -> pypsa.Network:
    """
    Add generators for different technologies at a series of location selected via an optimization mechanism.

    Parameters
    ----------
    net: pypsa.Network
        A network with defined buses.
    technologies: List[str]
        Which technologies to add using this methodology
    siting_params: Dict[str, Any]
        Set of parameters necessary for siting.
    region: str
        Region over which the network is defined
    use_ex_cap: bool (default: True)
        Whether to take into account existing capacity.
    limit_max_cap: bool (default: True)
        Whether to limit capacity expansion at each grid cell to a certain capacity potential.
    output_dir: str
        Absolute path to directory where resite output should be stored

    Returns
    -------
    net: pypsa.Network
        Updated network

    Notes
    -----
    net.buses must have a 'region_onshore' if adding onshore technologies and a 'region_offshore' attribute
    if adding offshore technologies.
    """

    for param in ["timeslice", "spatial_resolution", "modelling", "formulation", "formulation_params", "write_lp"]:
        assert param in siting_params, f"Error: Missing parameter {param} for siting."

    from resite.resite import Resite

    logger.info('Setting up resite.')
    resite = Resite([region], technologies, siting_params["timeslice"], siting_params["spatial_resolution"],
                    siting_params["min_cap_if_selected"])
    resite.build_data(use_ex_cap)

    logger.info('resite model being built.')
    resite.build_model(siting_params["modelling"], siting_params['formulation'], siting_params['formulation_params'],
                       siting_params['write_lp'], output_dir)

    logger.info('Sending resite to solver.')
    resite.solve_model(solver_options=siting_params['solver_options'], solver=siting_params['solver'])

    logger.info('Retrieving resite results.')
    resite.retrieve_selected_sites_data()
    tech_location_dict = resite.sel_tech_points_dict
    existing_cap_ds = resite.sel_data_dict["existing_cap_ds"]
    cap_potential_ds = resite.sel_data_dict["cap_potential_ds"]
    cap_factor_df = resite.sel_data_dict["cap_factor_df"]

    logger.info("Saving resite results")
    resite.save(output_dir)

    if not resite.timestamps.equals(net.snapshots):
        # If network snapshots is a subset of resite snapshots just crop the data
        missing_timestamps = set(net.snapshots) - set(resite.timestamps)
        if not missing_timestamps:
            cap_factor_df = cap_factor_df.loc[net.snapshots]
        else:
            # In other case, need to recompute capacity factors
            raise NotImplementedError("Error: Network snapshots must currently be a subset of resite snapshots.")

    for tech, points in tech_location_dict.items():

        onshore_tech = get_config_values(tech, ['onshore'])

        # Associate sites to buses (using the associated shapes)
        buses = net.buses.copy()
        region_type = 'onshore_region' if onshore_tech else 'offshore_region'
        buses = buses.dropna(subset=[region_type])
        associated_buses = match_points_to_regions(points, buses[region_type]).dropna()
        points = list(associated_buses.index)

        p_nom_max = 'inf'
        if limit_max_cap:
            p_nom_max = cap_potential_ds[tech][points].values
        p_nom = existing_cap_ds[tech][points].values
        p_max_pu = cap_factor_df[tech][points].values

        capital_cost, marginal_cost = get_costs(tech, len(net.snapshots))

        net.madd("Generator",
                 pd.Index([f"Gen {tech} {x}-{y}" for x, y in points]),
                 bus=associated_buses.values,
                 p_nom_extendable=True,
                 p_nom_max=p_nom_max,
                 p_nom=p_nom,
                 p_nom_min=p_nom,
                 p_min_pu=0.,
                 p_max_pu=p_max_pu,
                 type=tech,
                 x=[x for x, _ in points],
                 y=[y for _, y in points],
                 marginal_cost=marginal_cost,
                 capital_cost=capital_cost)

    return net
Beispiel #7
0
def add_generators_in_grid_cells(net: pypsa.Network, technologies: List[str],
                                 region: str, spatial_resolution: float,
                                 use_ex_cap: bool = True, limit_max_cap: bool = True,
                                 min_cap_pot: List[float] = None) -> pypsa.Network:
    """
    Create VRES generators in every grid cells obtained from dividing a certain number of regions.

    Parameters
    ----------
    net: pypsa.Network
        A PyPSA Network instance with buses associated to regions
    technologies: List[str]
        Which technologies to add.
    region: str
        Region code defined in 'data_path'/geographics/region_definition.csv over which the network is defined.
    spatial_resolution: float
        Spatial resolution at which to define grid cells.
    use_ex_cap: bool (default: True)
        Whether to take into account existing capacity.
    limit_max_cap: bool (default: True)
        Whether to limit capacity expansion at each grid cell to a certain capacity potential.
    min_cap_pot: List[float] (default: None)
        List of thresholds per technology. Points with capacity potential under this threshold will be removed.


    Returns
    -------
    net: pypsa.Network
        Updated network

    Notes
    -----
    net.buses must have a 'region_onshore' if adding onshore technologies and a 'region_offshore' attribute
    if adding offshore technologies.
    """

    from resite.resite import Resite

    # Generate deployment sites using resite
    resite = Resite([region], technologies, [net.snapshots[0], net.snapshots[-1]], spatial_resolution)
    resite.build_data(use_ex_cap, min_cap_pot)

    for tech in technologies:

        points = resite.tech_points_dict[tech]
        onshore_tech = get_config_values(tech, ['onshore'])

        # Associate sites to buses (using the associated shapes)
        buses = net.buses.copy()
        region_type = 'onshore_region' if onshore_tech else 'offshore_region'
        buses = buses.dropna(subset=[region_type])
        associated_buses = match_points_to_regions(points, buses[region_type]).dropna()
        points = list(associated_buses.index)

        p_nom_max = 'inf'
        if limit_max_cap:
            p_nom_max = resite.data_dict["cap_potential_ds"][tech][points].values
        p_nom = resite.data_dict["existing_cap_ds"][tech][points].values
        p_max_pu = resite.data_dict["cap_factor_df"][tech][points].values

        capital_cost, marginal_cost = get_costs(tech, len(net.snapshots))

        net.madd("Generator",
                 pd.Index([f"Gen {tech} {x}-{y}" for x, y in points]),
                 bus=associated_buses.values,
                 p_nom_extendable=True,
                 p_nom_max=p_nom_max,
                 p_nom=p_nom,
                 p_nom_min=p_nom,
                 p_min_pu=0.,
                 p_max_pu=p_max_pu,
                 type=tech,
                 x=[x for x, _ in points],
                 y=[y for _, y in points],
                 marginal_cost=marginal_cost,
                 capital_cost=capital_cost)

    return net
Beispiel #8
0
def add_res_at_sites(
    net: pypsa.Network,
    config,
    output_dir,
    eu_countries,
):

    eu_technologies = config['res']['techs']

    logger.info(f"Adding RES {eu_technologies} generation.")

    spatial_res = config["res"]["spatial_resolution"]
    use_ex_cap = config["res"]["use_ex_cap"]
    min_cap_pot = config["res"]["min_cap_pot"]
    min_cap_if_sel = config["res"]["min_cap_if_selected"]

    # Build sites for EU
    r_europe = Resite(eu_countries, eu_technologies,
                      [net.snapshots[0], net.snapshots[-1]], spatial_res,
                      min_cap_if_sel)
    regions_shapes = net.buses.loc[eu_countries,
                                   ["onshore_region", 'offshore_region']]
    regions_shapes.columns = ['onshore', 'offshore']
    r_europe.build_data(use_ex_cap, min_cap_pot, regions_shapes=regions_shapes)
    net.cc_ds = r_europe.data_dict["capacity_credit_ds"]

    # Build sites for other regions
    non_eu_res = config["non_eu"]
    all_remote_countries = []
    if non_eu_res is not None:
        for region in non_eu_res.keys():
            if region in ["na", "me"]:
                remote_countries = get_subregions(region)
            else:
                remote_countries = [region]
            all_remote_countries += remote_countries
            remote_techs = non_eu_res[region]
            r_remote = Resite(remote_countries, remote_techs,
                              [net.snapshots[0], net.snapshots[-1]],
                              spatial_res)
            regions_shapes = net.buses.loc[
                remote_countries, ["onshore_region", 'offshore_region']]
            regions_shapes.columns = ['onshore', 'offshore']
            r_remote.build_data(False,
                                compute_load=False,
                                regions_shapes=regions_shapes)

            # Add sites to European ones
            r_europe.regions += r_remote.regions
            r_europe.technologies = list(
                set(r_europe.technologies).union(r_remote.technologies))
            r_europe.min_cap_pot_dict = {
                **r_europe.min_cap_pot_dict,
                **r_remote.min_cap_pot_dict
            }
            r_europe.tech_points_tuples = np.concatenate(
                (r_europe.tech_points_tuples, r_remote.tech_points_tuples))
            r_europe.initial_sites_ds = r_europe.initial_sites_ds.append(
                r_remote.initial_sites_ds)
            r_europe.tech_points_regions_ds = \
                r_europe.tech_points_regions_ds.append(r_remote.tech_points_regions_ds)
            r_europe.data_dict["load"] = pd.concat(
                [r_europe.data_dict["load"], r_remote.data_dict["load"]],
                axis=1)
            r_europe.data_dict["cap_potential_ds"] = \
                r_europe.data_dict["cap_potential_ds"].append(r_remote.data_dict["cap_potential_ds"])
            r_europe.data_dict["existing_cap_ds"] = \
                r_europe.data_dict["existing_cap_ds"].append(r_remote.data_dict["existing_cap_ds"])
            r_europe.data_dict["cap_factor_df"] = \
                pd.concat([r_europe.data_dict["cap_factor_df"], r_remote.data_dict["cap_factor_df"]], axis=1)

    # Update dictionary
    tech_points_dict = {}
    techs = set(r_europe.initial_sites_ds.index.get_level_values(0))
    for tech in techs:
        tech_points_dict[tech] = list(r_europe.initial_sites_ds[tech].index)
    r_europe.tech_points_dict = tech_points_dict

    # Do siting if required
    if config["res"]["strategy"] == "siting":
        logger.info('resite model being built.')
        siting_params = config['res']
        # if siting_params['formulation'] == "min_cost_global":
        #    siting_params['formulation_params']['perc_per_region'] = \
        #        siting_params['formulation_params']['perc_per_region'] + [0.] * len(all_remote_countries)
        r_europe.build_model(siting_params["modelling"],
                             siting_params['formulation'],
                             siting_params['formulation_params'],
                             siting_params['write_lp'], f"{output_dir}resite/")

        logger.info('Sending resite to solver.')
        r_europe.init_output_folder(f"{output_dir}resite/")
        r_europe.solve_model(f"{output_dir}resite/",
                             solver=config['solver'],
                             solver_options=config['solver_options'])

        logger.info("Saving resite results")
        r_europe.retrieve_selected_sites_data()
        r_europe.save(f"{output_dir}resite/")

        # Add solution to network
        logger.info('Retrieving resite results.')
        tech_location_dict = r_europe.sel_tech_points_dict
        existing_cap_ds = r_europe.sel_data_dict["existing_cap_ds"]
        cap_potential_ds = r_europe.sel_data_dict["cap_potential_ds"]
        cap_factor_df = r_europe.sel_data_dict["cap_factor_df"]

        if not r_europe.timestamps.equals(net.snapshots):
            # If network snapshots is a subset of resite snapshots just crop the data
            missing_timestamps = set(net.snapshots) - set(r_europe.timestamps)
            if not missing_timestamps:
                cap_factor_df = cap_factor_df.loc[net.snapshots]
            else:
                # In other case, need to recompute capacity factors
                raise NotImplementedError(
                    "Error: Network snapshots must currently be a subset of resite snapshots."
                )

    else:  # no siting
        tech_location_dict = r_europe.tech_points_dict
        existing_cap_ds = r_europe.data_dict["existing_cap_ds"]
        cap_potential_ds = r_europe.data_dict["cap_potential_ds"]
        cap_factor_df = r_europe.data_dict["cap_factor_df"]

    for tech, points in tech_location_dict.items():

        onshore_tech = get_config_values(tech, ['onshore'])

        # Associate sites to buses (using the associated shapes)
        buses = net.buses.copy()
        region_type = 'onshore_region' if onshore_tech else 'offshore_region'
        buses = buses.dropna(subset=[region_type])
        associated_buses = match_points_to_regions(
            points, buses[region_type]).dropna()
        points = list(associated_buses.index)

        p_nom_max = 'inf'
        if config['res']['limit_max_cap']:
            p_nom_max = cap_potential_ds[tech][points].values
        p_nom = existing_cap_ds[tech][points].values
        p_max_pu = cap_factor_df[tech][points].values

        capital_cost, marginal_cost = get_costs(
            tech, sum(net.snapshot_weightings['objective']))

        net.madd("Generator",
                 pd.Index([f"Gen {tech} {x}-{y}" for x, y in points]),
                 bus=associated_buses.values,
                 p_nom_extendable=True,
                 p_nom_max=p_nom_max,
                 p_nom=p_nom,
                 p_nom_min=p_nom,
                 p_min_pu=0.,
                 p_max_pu=p_max_pu,
                 type=tech,
                 x=[x for x, _ in points],
                 y=[y for _, y in points],
                 marginal_cost=marginal_cost,
                 capital_cost=capital_cost)

    return net
Beispiel #9
0
                       regions,
                       p_nom_extendable=True,
                       extension_multiplier=2.0)
    regions_shapes = net.buses.loc[regions,
                                   ["onshore_region", 'offshore_region']]
    regions_shapes.columns = ['onshore', 'offshore']

    output_folder = join(dirname(abspath(__file__)),
                         f"output/{strftime('%Y%m%d_%H%M%S')}/")
    # Compute and save results
    if not isdir(output_folder):
        makedirs(output_folder)

    logger.info('Building class.')
    resite = Resite(regions, params["technologies"], params["timeslice"],
                    params["spatial_resolution"],
                    params['min_cap_if_selected'])

    logger.info('Reading input.')
    resite.build_data(use_ex_cap=params["use_ex_cap"],
                      min_cap_pot=params["min_cap_pot"],
                      regions_shapes=regions_shapes)

    logger.info('Model being built.')
    resite.build_model(params["modelling"], params['formulation'],
                       params['formulation_params'], params['write_lp'],
                       output_folder)

    logger.info('Sending model to solver.')
    results = resite.solve_model(output_folder=output_folder,
                                 solver_options=params['solver_options'],