Beispiel #1
0
        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model


from torchsample.callbacks import ReduceLROnPlateau

model_ft = resnet3.resnet182(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft.avgpool = nn.AdaptiveAvgPool2d(1)

ct = 0
for child in model_ft.children():
    ct += 1
    if ct < 0:
        for param in child.parameters():
            param.requires_grad = False

if use_gpu:
    model_ft = model_ft.cuda()

criterion = nn.CrossEntropyLoss()
import cv2, torch
import io

from PIL import Image
from torchvision import models, transforms
from torch.autograd import Variable
from torch.nn import functional as F
import numpy as np

import resnet3
import torch.nn.functional as F

import torch.nn as nn
import os

net = resnet3.resnet182(pretrained=True)
num_ftrs = net.fc.in_features
net.fc = nn.Linear(num_ftrs, 2)
net.avgpool = nn.AdaptiveAvgPool2d(1)
net.eval()
resume = 'GD1.pth.tar'
if resume:
    if os.path.isfile(resume):
        print("=> loading checkpoint '{}'".format(resume))
        checkpoint = torch.load(resume)
        start_epoch = checkpoint['epoch']
        best_prec1 = checkpoint['best_prec1']
        net.load_state_dict(checkpoint['state_dict'])
        print("=> loaded checkpoint '{}' (epoch {})".format(
            resume, checkpoint['epoch']))
        finalconv_name = 'layer4'