def testLinearSVC(self):
     ml = ML()
     t = Training("classification", "LinearSVC", {
         "maxIter": 10,
         "regParam": 0.3
     }, 0.7, sample_libsvm_data, "./model/svc")
     ml.train_model(t)
 def testMultilayerPerceptronClassifier(self):
     # TODO param layers is neccesary
     ml = ML()
     t = Training("classification", "MultilayerPerceptronClassifier",
                  {"layers": [4, 5, 4, 3]}, 0.7,
                  sample_multiclass_classification_data, "./model/mlp")
     print(ml.train_model(t))
 def testLogisticRegression(self):
     ml = ML()
     t = Training(
         "classification", "LogisticRegression", {
             "maxIter": 10,
             "regParam": 0.3,
             "elasticNetParam": 0.8,
             "family": "multinomial"
         }, 0.7, iris, "./model/lr")
     ml.train_model(t)
Beispiel #4
0
 def testCSV(self):
     ml = ML()
     # ml.compute_statistics(iris, "sepallength")
     t = Training(
         "classification", "LogisticRegression", {
             "maxIter": 10,
             "regParam": 0.3,
             "elasticNetParam": 0.8,
             "family": "multinomial"
         }, 0.7, iris, "./model/lr")
     # ml.train_model(t)
     ml.model_predict_single(t, iris)
 def testRandomForestClassifier(self):
     ml = ML()
     t = Training("classification", "RandomForestClassifier",
                  {"maxDepth": 10}, 0.7, sample_libsvm_data, "./model/rf")
     print(ml.train_model(t))
Beispiel #6
0
 def testGeneralizedLinearRegression(self):
     ml = ML()
     t = Training("regression", "GeneralizedLinearRegression",
                  {"regParam": 0.3}, 0.7, sample_linear_regression_data,
                  "./model/glr")
     print(ml.train_model(t))
Beispiel #7
0
 def testAFTSurvivalRegression(self):
     # TODO not have test data
     ml = ML()
     t = Training("regression", "AFTSurvivalRegression", {}, 0.7,
                  sample_libsvm_data, "./model/aftsr")
     print(ml.train_model(t))
Beispiel #8
0
 def testGaussianMixture(self):
     ml = ML()
     t = Training("clustering", "GaussianMixture", {"maxIter": 99}, 0.7,
                  sample_kmeans_data, "./model/gm")
     print(ml.train_model(t))
Beispiel #9
0
 def testDecisionTreeRegressor(self):
     ml = ML()
     t = Training("regression", "DecisionTreeRegressor", {}, 0.7,
                  sample_libsvm_data, "./model/dtr")
     print(ml.train_model(t))
Beispiel #10
0
 def testIsotonicRegression(self):
     ml = ML()
     t = Training("regression", "IsotonicRegression", {}, 0.7,
                  sample_linear_regression_data, "./model/isotonic")
     print(ml.train_model(t))
Beispiel #11
0
 def testLinearRegression(self):
     ml = ML()
     t = Training("regression", "LinearRegression", {"maxIter": 99}, 0.7,
                  sample_linear_regression_data, "./model/linear")
     print(ml.train_model(t))
Beispiel #12
0
                "nullable": True,
                "type": "double"
            }, {
                "metadata": {
                    "label": True
                },
                "name": "class",
                "nullable": True,
                "type": "string"
            }],
            "type":
            "struct"
        })
    # {"fields":[{"metadata":{},"name":"sepallength","nullable":true,"type":"double"},{"metadata":{},"name":"sepalwidth","nullable":true,"type":"double"},{"metadata":{},"name":"petallength","nullable":true,"type":"double"},{"metadata":{},"name":"petalwidth","nullable":true,"type":"double"},{"metadata":{"label":true},"name":"class","nullable":true,"type":"string"}],"type":"struct"}

    ml = ML()
    # ml.read_source(s)
    # schema_json = ml.get_schema_json(s)
    # print(schema_json)
    # s.schema_json = schema_json
    t = Training(
        "classification", "LogisticRegression", {
            "maxIter": 10,
            "regParam": 0.3,
            "elasticNetParam": 0.8,
            "family": "multinomial"
        }, 0.7, s, "./test")
    # ml.train_model(t)
    ml.model_predict(t, s)
    # ml.compute_statistics(s, "sepallength")
Beispiel #13
0
 def testALS(self):
     ml = ML()
     t = Training("recommendation", "ALS", {"maxIter": 9}, 0.7, test,
                  "./model/als")
     ml.model_predict_single()
     print(ml.train_model(t))
Beispiel #14
0
 def testLDA(self):
     ml = ML()
     t = Training("clustering", "LDA", {}, 0.7, sample_lda_libsvm_data,
                  "./model/lda")
     print(ml.train_model(t))
Beispiel #15
0
 def testBisectingKMeans(self):
     ml = ML()
     t = Training("clustering", "BisectingKMeans", {}, 0.7,
                  sample_kmeans_data, "./model/bkmeans")
     print(ml.train_model(t))
 def testGBTClassifier(self):
     ml = ML()
     t = Training("classification", "GBTClassifier", {"maxDepth": 10}, 0.7,
                  sample_libsvm_data, "./model/gbt")
     print(ml.train_model(t))
 def testNaiveBayes(self):
     ml = ML()
     t = Training("classification", "NaiveBayes", {"smoothing": 2.0}, 0.7,
                  sample_libsvm_data, "./model/bayes")
     print(ml.train_model(t))
Beispiel #18
0
 def testRandomForestRegressor(self):
     ml = ML()
     t = Training("regression", "RandomForestRegressor", {"maxDepth": 5},
                  0.7, sample_libsvm_data, "./model/rfr")
     print(ml.train_model(t))
 def testOneVsRest(self):
     # TODO param classifier is neccesary
     ml = ML()
     t = Training("classification", "OneVsRest", {"maxIter": 10}, 0.7,
                  sample_multiclass_classification_data, "./model/ovr")
     print(ml.train_model(t))
Beispiel #20
0
 def testGBTRegressor(self):
     ml = ML()
     t = Training("regression", "GBTRegressor", {"maxDepth": 6}, 0.7,
                  sample_libsvm_data, "./model/gbtr")
     print(ml.train_model(t))