Beispiel #1
0
def _run_single_station(db_evid, angles, config_filtering, config_processing):
    """
    Internal processing function for running sequence of candidate angles
    over a single station.

    :param db_evid: Dictionary of event streams (3-channel ZNE) keyed by event ID. \
        Best obtained using class NetworkEventDataset
    :type db_evid: sortedcontainers.SortedDict or similar dict-like
    :param angles: Sequence of candidate correction angles to try (degrees)
    :type angles: Iterable(float)
    :param config_filtering: Waveform filtering options for RF processing
    :type config_filtering: dict
    :param config_processing: RF processing options
    :type config_processing: dict
    :return: Amplitude metric as a function of angle. Same length as angles array.
    :rtype: list(float)
    """
    ampls = []
    for correction in angles:
        rf_stream_all = RFStream()
        for evid, stream in db_evid.items():
            stream_rot = copy.deepcopy(stream)
            for tr in stream_rot:
                tr.stats.back_azimuth += correction
                while tr.stats.back_azimuth < 0:
                    tr.stats.back_azimuth += 360
                while tr.stats.back_azimuth >= 360:
                    tr.stats.back_azimuth -= 360
            # end for

            rf_3ch = transform_stream_to_rf(evid, RFStream(stream_rot),
                                            config_filtering,
                                            config_processing)
            if rf_3ch is None:
                continue

            rf_stream_all += rf_3ch
        # end for
        if len(rf_stream_all) > 0:
            rf_stream_R = rf_stream_all.select(component='R')
            rf_stream_R.trim2(-5, 5, reftime='onset')
            rf_stream_R.detrend('linear')
            rf_stream_R.taper(0.1)
            R_stack = rf_stream_R.stack().trim2(-1, 1, reftime='onset')[0].data
            ampl_mean = np.mean(R_stack)
        else:
            ampl_mean = np.nan
        # endif
        ampls.append(ampl_mean)
    # end for
    return ampls
Beispiel #2
0
    def __iter__(self):
        logger = logging.getLogger(__name__)
        logger.setLevel(logging.INFO)
        logger.info("Scanning jobs metadata from file {}".format(self.h5_filename))
        with self._open_source_file() as f:
            wf_data = f['waveforms']
            num_stations = len(wf_data)
            count = 0
            event_count = 0
            create_event_id = False
            first_loop = True
            for station_id in wf_data:
                count += 1
                logger.info("Station {} {}/{}".format(station_id, count, num_stations))
                station_data = wf_data[station_id]
                for event_time in station_data:
                    event_traces = station_data[event_time]
                    if not event_traces:
                        continue

                    if first_loop:
                        first_loop = False
                        tmp = list(event_traces.keys())[0]
                        create_event_id = ('event_id' not in event_traces[tmp].attrs)

                    traces = []
                    for trace_id in event_traces:
                        trace = dataset2trace(event_traces[trace_id])
                        traces.append(trace)

                    stream = RFStream(traces=traces)

                    if len(stream) != self.num_components and self.channel_pattern is not None:
                        for ch_mask in self.channel_pattern.split(','):
                            _stream = stream.select(channel=ch_mask)
                            logging.info("Tried channel mask {}, got {} channels".format(ch_mask, len(_stream)))
                            if len(_stream) == self.num_components:
                                stream = _stream
                                break
                        # end for
                    # end if

                    if len(stream) != self.num_components:
                        logging.warning("Incorrect number of traces ({}) for stn {} event {}, skipping"
                                        .format(len(stream), station_id, event_time))
                        continue
                    # end if

                    # Force order of traces to ZNE ordering.
                    stream.traces = sorted(stream.traces, key=zne_order)
                    # Strongly assert expected ordering of traces. This must be respected so that
                    # RF normalization works properly.
                    assert stream.traces[0].stats.channel[-1] == 'Z'
                    assert stream.traces[1].stats.channel[-1] == 'N'
                    assert stream.traces[2].stats.channel[-1] == 'E'

                    event_count += 1
                    if create_event_id:
                        event_id = event_count
                    else:
                        event_id = traces[0].stats.event_id
                        assert np.all([(tr.stats.event_id == event_id) for tr in traces])
                    # end if

                    yield station_id, event_id, event_time, stream
                # end for
            # end for
        # end with
        logger.info("Yielded {} event traces to process".format(event_count))
        stream3c.rf()
        stream3c.moveout()
        stream.extend(stream3c)
    stream.write(rffile, 'H5')
    print(stream)

## Plot receiver function
plot_rf = 0
if plot_rf:
    stream = read_rf(rffile, 'H5')
    kw = {
        'trim': (-5, 20),
        'fillcolors': ('black', 'gray'),
        'trace_height': 0.1
    }
    stream.select(component='L',
                  station='PB01').sort(['back_azimuth']).plot_rf(**kw)
    plt.savefig('PB01' + '_L_RF.png')
    for sta in ('PB01', 'PB04'):
        stream.select(component='Q',
                      station=sta).sort(['back_azimuth']).plot_rf(**kw)
        plt.savefig(sta + '_Q_RF.png')

if not os.path.exists(profilefile):
    stream = read_rf(rffile, 'H5')
    ppoints = stream.ppoints(70)
    boxes = get_profile_boxes((-21.3, -70.7),
                              90,
                              np.linspace(0, 180, 73),
                              width=530)
    plt.figure(figsize=(10, 10))
    plot_profile_map(boxes, inventory=inventory, ppoints=ppoints)