def run_scenario(scenario): # scenario name sce = scenario.__name__ sce_nice_name = sce.replace('_', ' ').title() # prepare input data data = rivus.read_excel(data_spreadsheet) vertex = pdshp.read_shp(vertex_shapefile) edge = prepare_edge(edge_shapefile, building_shapefile) # apply scenario function to input data data, vertex, edge = scenario(data, vertex, edge) # create & solve model model = rivus.create_model(data, vertex, edge) prob = model.create() optim = SolverFactory('gurobi') optim = setup_solver(optim) result = optim.solve(prob, tee=True) prob.load(result) # create result directory if not existent result_dir = os.path.join('result', os.path.basename(base_directory)) if not os.path.exists(result_dir): os.makedirs(result_dir) # report rivus.report(prob, os.path.join(result_dir, 'report.xlsx')) # plots for com, plot_type in [('Elec', 'caps'), ('Heat', 'caps'), ('Gas', 'caps'), ('Elec', 'peak'), ('Heat', 'peak')]: # two plot variants for plot_annotations in [False, True]: # create plot fig = rivus.plot(prob, com, mapscale=False, tick_labels=False, plot_demand=(plot_type == 'peak'), annotations=plot_annotations) plt.title('') # save to file for ext, transp in [('png', True), ('png', False), ('pdf', True)]: transp_str = ('-transp' if transp and ext != 'pdf' else '') annote_str = ('-annote' if plot_annotations else '') # determine figure filename from scenario name, plot type, # commodity, transparency, annotations and extension fig_filename = '{}-{}-{}{}{}.{}'.format( sce, plot_type, com, transp_str, annote_str, ext) fig_filename = os.path.join(result_dir, fig_filename) fig.savefig(fig_filename, dpi=300, bbox_inches='tight', transparent=transp) return prob
def run_scenario(scenario, result_dir): # scenario name sce = scenario.__name__ sce_nice_name = sce.replace('_', ' ').title() # prepare input data data = rivus.read_excel(data_spreadsheet) vertex = pdshp.read_shp(vertex_shapefile) edge = prepare_edge(edge_shapefile, building_shapefile) # apply scenario function to input data data, vertex, edge = scenario(data, vertex, edge) log_filename = os.path.join(result_dir, sce+'.log') # create & solve model model = rivus.create_model( data, vertex, edge, peak_multiplier=lambda x:scale_peak_demand(x, peak_demand_prefactor)) # scale peak demand according to pickled urbs findings #reduced_peak = scale_peak_demand(model, peak_demand_prefactor) #model.peak = reduced_peak prob = model.create() optim = SolverFactory('gurobi') optim = setup_solver(optim, logfile=log_filename) result = optim.solve(prob, tee=True) prob.load(result) # report rivus.save(prob, os.path.join(result_dir, sce+'.pgz')) rivus.report(prob, os.path.join(result_dir, sce+'.xlsx')) # plot without buildings rivus.result_figures(prob, os.path.join(result_dir, sce)) # plot with buildings and to_edge lines more_shapefiles = [{'name': 'to_edge', 'color': rivus.to_rgb(192, 192, 192), 'shapefile': to_edge_shapefile, 'zorder': 1, 'linewidth': 0.1}] rivus.result_figures(prob, os.path.join(result_dir, sce+'_bld'), buildings=(building_shapefile, False), shapefiles=more_shapefiles) return prob
total_area = buildings_grouped.sum()['AREA'].unstack() # load edges (streets) and join with summed areas # 1. read shapefile to DataFrame (with geometry column) # 2. join DataFrame total_area on index (=ID) # 3. fill missing values with 0 edge = pdshp.read_shp(edge_shapefile) edge = edge.set_index('Edge') edge = edge.join(total_area) edge = edge.fillna(0) # load nodes vertex = pdshp.read_shp(vertex_shapefile) # load spreadsheet data data = rivus.read_excel(data_spreadsheet) # create & solve model prob = rivus.create_model(data, vertex, edge) if PYOMO3: prob = prob.create() # no longer needed in Pyomo 4 optim = SolverFactory('glpk') optim = setup_solver(optim) result = optim.solve(prob, tee=True) if PYOMO3: prob.load(result) # no longer needed in Pyomo 4 # load results costs, Pmax, Kappa_hub, Kappa_process = rivus.get_constants(prob) source, flows, hub_io, proc_io, proc_tau = rivus.get_timeseries(prob)