def main():
    '''Entrypoint to the program.
    - Input objectClass: Folder in 3D Net database.
  '''

    # PARAMETERS =====================================================================================

    # INITIALIZATION =================================================================================

    rlEnv = RlEnvironment(True)
    rlAgent = RlAgent(rlEnv)

    # RUN TEST =======================================================================================

    for placeIdx, placePose in enumerate(rlAgent.placePoses):

        print("Showing pose {}: ".format(placeIdx))
        print placePose

        rlAgent.MoveHandToPose(placePose)

        raw_input("Press [Enter] to continue...")

    print("Finished.")
Beispiel #2
0
def main(saveFileSuffix):
    '''Entrypoint to the program.'''

    # PARAMETERS =====================================================================================

    # objects
    objectClass = "mug_train"
    randomScale = True
    targetObjectAxis = array([0, 0, 1])
    maxAngleFromObjectAxis = 20 * (pi / 180)
    maxObjectTableGap = 0.03

    # view
    viewCenter = array([0, 0, 0])
    viewKeepout = 0.50
    viewWorkspace = [(-1, 1), (-1, 1), (0.002, 1)]

    # grasps
    graspDetectMode = 0  # 0=sample, 1=sample+label
    nGraspSamples = 100
    graspScoreThresh = 350

    # learning
    nValueIterations = 70
    nDataIterations = 50
    nGraspIterations = 20
    pickEpsilon = 1.0
    placeEpsilon = 1.0
    minPickEpsilon = 0.10
    minPlaceEpsilon = 0.10
    pickEpsilonDelta = 0.05
    placeEpsilonDelta = 0.05
    maxExperiences = 25000
    trainingBatchSize = 25000
    unbiasOnIteration = nValueIterations - 5

    # visualization/saving
    saveFileName = "results" + saveFileSuffix + ".mat"
    recordLoss = True
    showViewer = False
    showSteps = False

    # INITIALIZATION =================================================================================

    threeDNet = ThreeDNet()
    rlEnv = RlEnvironment(showViewer)
    rlAgent = RlAgent(rlEnv)
    nPlaceOptions = len(rlAgent.placePoses)
    experienceDatabase = []

    # RUN TEST =======================================================================================

    averageReward = []
    placeActionCounts = []
    trainLosses = []
    testLosses = []
    databaseSize = []
    iterationTime = []

    for valueIterationIdx in xrange(nValueIterations):

        print("Iteration {}. Epsilon pick: {}, place: {}".format(\
          valueIterationIdx, pickEpsilon, placeEpsilon))

        # 1. Collect data for this training iteration.

        iterationStartTime = time.time()
        R = []
        placeCounts = zeros(nPlaceOptions)

        # check if it's time to unbias data
        if valueIterationIdx >= unbiasOnIteration:
            maxExperiences = trainingBatchSize  # selects all recent experiences, unbiased
            pickEpsilon = 0  # estimating value function of actual policy
            placeEpsilon = 0  # estimating value function of actual policy

        for dataIterationIdx in xrange(nDataIterations):

            # place random object in random orientation on table
            fullObjName, objScale = threeDNet.GetRandomObjectFromClass(
                objectClass, randomScale)
            objHandle, objRandPose = rlEnv.PlaceObjectRandomOrientation(
                fullObjName, objScale)

            # move the hand to view position and capture a point cloud
            cloud, viewPoints, viewPointIndices = rlAgent.GetDualCloud(
                viewCenter, viewKeepout, viewWorkspace)
            rlAgent.PlotCloud(cloud)

            # detect grasps in the sensory data
            grasps = rlAgent.DetectGrasps(cloud, viewPoints, viewPointIndices,
                                          nGraspSamples, graspScoreThresh,
                                          graspDetectMode)
            rlAgent.PlotGrasps(grasps)

            if showSteps:
                raw_input("Acquired grasps.")

            if len(grasps) == 0:
                print("No grasps found. Skipping iteration.")
                rlEnv.RemoveObject(objHandle)
                rlAgent.UnplotCloud()
                continue

            for graspIterationIdx in xrange(nGraspIterations):

                print("Episode {}.{}.{}.".format(valueIterationIdx,
                                                 dataIterationIdx,
                                                 graspIterationIdx))

                # perform pick action
                grasp = rlAgent.GetGrasp(grasps, pickEpsilon)
                s = rlEnv.GetState(rlAgent, grasp, None)
                rlAgent.PlotGrasps([grasp])

                if showSteps:
                    print("Selected grasp.")

                # perform place action
                P = rlAgent.GetPlacePose(grasp, placeEpsilon)
                rlAgent.MoveHandToPose(P)
                ss = rlEnv.GetState(rlAgent, grasp, P)
                rlAgent.MoveObjectToHandAtGrasp(grasp, objHandle)
                r = rlEnv.RewardBinary(objHandle, targetObjectAxis,
                                       maxAngleFromObjectAxis,
                                       maxObjectTableGap)
                print("The robot receives {} reward.".format(r))

                if showSteps:
                    raw_input("Press [Enter] to continue...")

                # add experience to database
                experienceDatabase.append((s, ss, 0))  # grasp -> placement
                experienceDatabase.append((ss, None, r))  # placement -> end

                # record save data
                R.append(r)
                placeCounts += ss[1][len(s[1]) - nPlaceOptions:]

                # cleanup this grasp iteration
                rlAgent.UnplotGrasps()
                rlEnv.MoveObjectToPose(objHandle, objRandPose)

            # cleanup this data iteration
            rlEnv.RemoveObject(objHandle)
            rlAgent.UnplotCloud()

        # 2. Compute value labels for data.
        experienceDatabase = rlAgent.PruneDatabase(experienceDatabase,
                                                   maxExperiences)
        Dl = rlAgent.DownsampleAndLabelData(\
          experienceDatabase, trainingBatchSize)
        databaseSize.append(len(experienceDatabase))

        # 3. Train network from replay database.
        trainLoss, testLoss = rlAgent.Train(Dl, recordLoss=recordLoss)
        trainLosses.append(trainLoss)
        testLosses.append(testLoss)

        pickEpsilon -= pickEpsilonDelta
        placeEpsilon -= placeEpsilonDelta
        pickEpsilon = max(minPickEpsilon, pickEpsilon)
        placeEpsilon = max(minPlaceEpsilon, placeEpsilon)

        # 4. Save results
        averageReward.append(mean(R))
        placeActionCounts.append(placeCounts)
        iterationTime.append(time.time() - iterationStartTime)
        saveData = {
            "objectClass": objectClass,
            "nGraspSamples": nGraspSamples,
            "graspScoreThresh": graspScoreThresh,
            "nValueIterations": nValueIterations,
            "nDataIterations": nDataIterations,
            "nGraspIterations": nGraspIterations,
            "pickEpsilon": pickEpsilon,
            "placeEpsilon": placeEpsilon,
            "minPickEpsilon": minPickEpsilon,
            "minPlaceEpsilon": minPlaceEpsilon,
            "pickEpsilonDelta": pickEpsilonDelta,
            "placeEpsilonDelta": placeEpsilonDelta,
            "maxExperiences": maxExperiences,
            "trainingBatchSize": trainingBatchSize,
            "averageReward": averageReward,
            "placeActionCounts": placeActionCounts,
            "trainLoss": trainLosses,
            "testLoss": testLosses,
            "databaseSize": databaseSize,
            "iterationTime": iterationTime,
            "placePoses": rlAgent.placePoses
        }
        savemat(saveFileName, saveData)
Beispiel #3
0
def main(objectClass, epsilon):
  '''Entrypoint to the program.
    - Input objectClass: Folder in 3D Net database.
  '''

  # PARAMETERS =====================================================================================

  # objects
  randomScale = True
  targetObjectAxis = array([0,0,1])
  maxAngleFromObjectAxis = 20*(pi/180)
  maxObjectTableGap = 0.02

  # view
  viewCenter = array([0,0,0])
  viewKeepout = 0.50
  viewWorkspace = [(-1,1),(-1,1),(-1,1)]

  # grasps
  graspDetectMode = 1 # 0=sample, 1=sample+label
  nGraspSamples = 200
  graspScoreThresh = 300
  nGraspInliers = 3

  # learning
  weightsFileName = "/home/mgualti/mgualti/PickAndPlace/simulation/caffe/image_iter_5000.caffemodel"
  nDataIterations = 300

  # visualization/saving
  showViewer = False
  showEveryStep = False
  saveFileName = "results-single-" + objectClass + "-epsilon" + str(epsilon) + ".mat"

  # INITIALIZATION =================================================================================

  threeDNet = ThreeDNet()
  rlEnv = RlEnvironment(showViewer)
  rlAgent = RlAgent(rlEnv)
  if epsilon < 1.0: rlAgent.LoadNetworkWeights(weightsFileName)
  Return = []

  # RUN TEST =======================================================================================

  # Collect data for this training iteration.

  for dataIterationIdx in xrange(nDataIterations):

    print("Iteration {}.".format(dataIterationIdx))

    # place object in random orientation on table
    fullObjName, objScale = threeDNet.GetRandomObjectFromClass(objectClass, randomScale)
    objHandle, objRandPose = rlEnv.PlaceObjectRandomOrientation(fullObjName, objScale)

    # move the hand to view position and capture a point cloud
    cloud, viewPoints, viewPointIndices = rlAgent.GetDualCloud(
      viewCenter, viewKeepout, viewWorkspace)
    rlAgent.PlotCloud(cloud)

    # detect grasps in the sensory data
    grasps = rlAgent.DetectGrasps(cloud, viewPoints, viewPointIndices,
      nGraspSamples, graspScoreThresh, nGraspInliers, graspDetectMode)
    rlAgent.PlotGrasps(grasps)

    if len(grasps) == 0:
      print("No grasps found. Skipping iteration.")
      rlEnv.RemoveObject(objHandle)
      rlAgent.UnplotCloud()
      continue

    if showEveryStep:
      raw_input("Press [Enter] to continue...")

    # perform pick action
    grasp = rlAgent.GetGrasp(grasps, epsilon)
    rlAgent.PlotGrasps([grasp])

    if showEveryStep:
      raw_input("Press [Enter] to continue...")

    # perform place action
    P = rlAgent.GetPlacePose(grasp, epsilon)
    rlAgent.MoveHandToPose(P)
    rlAgent.MoveObjectToHandAtGrasp(grasp, objHandle)
    r = rlEnv.RewardHeightExponential(
      objHandle, targetObjectAxis, maxAngleFromObjectAxis, maxObjectTableGap)
    print("The robot receives {} reward.".format(r))
    Return.append(r)

    if showEveryStep:
      raw_input("Press [Enter] to continue...")

    # cleanup this data iteration
    rlEnv.RemoveObject(objHandle)
    rlAgent.UnplotGrasps()
    rlAgent.UnplotCloud()

    saveData = {"randomScale":randomScale, "targetObjectAxis":targetObjectAxis,
      "maxAngleFromObjectAxis":maxAngleFromObjectAxis, "maxObjectTableGap":maxObjectTableGap,
      "graspDetectMode":graspDetectMode, "nGraspSamples":nGraspSamples,
      "graspScoreThresh":graspScoreThresh, "weightsFileName":weightsFileName,
      "nDataIterations":nDataIterations, "epsilon":epsilon, "Return":Return}
    savemat(saveFileName, saveData)
Beispiel #4
0
def main(objectClass, epsilon):
    '''Entrypoint to the program.'''

    # PARAMETERS =====================================================================================

    # objects
    nObjects = 7
    randomObjectScale = True
    targetObjectAxis = array([0, 0, 1])
    maxAngleFromObjectAxis = 20 * (pi / 180)
    maxObjectTableGap = 0.02

    # view
    viewCenter = array([0, 0, 0])
    viewKeepout = 0.50
    viewWorkspace = [(-1, 1), (-1, 1), (-1, 1)]
    objViewWorkspace = [(-1, 1), (-1, 1), (0.002, 1)]

    # grasps
    graspDetectMode = 1  # 0=sample, 1=sample+label
    nGraspSamples = 500
    graspScoreThresh = 300
    nGraspInliers = 2

    # testing
    weightsFileName = "/home/mgualti/mgualti/PickAndPlace/simulation/caffe/image_iter_5000.caffemodel"
    nDataIterations = 300

    # visualization/saving
    saveFileName = "results-clutter-" + objectClass + "-epsilon" + str(
        epsilon) + ".mat"
    showViewer = False
    showSteps = False

    # INITIALIZATION =================================================================================

    threeDNet = ThreeDNet()
    rlEnv = RlEnvironment(showViewer)
    rlAgent = RlAgent(rlEnv)
    if epsilon < 1.0: rlAgent.LoadNetworkWeights(weightsFileName)
    Return = []

    # RUN TEST =======================================================================================

    for dataIterationIdx in xrange(nDataIterations):

        print("Iteration {}.".format(dataIterationIdx))

        # place clutter on table
        fullObjNames, objScales = threeDNet.GetRandomObjectSet(
            objectClass, nObjects, randomObjectScale)
        objHandles, objPoses = rlEnv.PlaceObjectSet(fullObjNames, objScales)

        objCloud, objCloudIdxs = rlEnv.AssignPointsToObjects(
            rlAgent, objHandles, viewCenter, viewKeepout, objViewWorkspace)

        if showSteps:
            raw_input("Objects placed.")

        # move the hand to view position and capture a point cloud
        cloud, viewPoints, viewPointIndices = rlAgent.GetDualCloud(
            viewCenter, viewKeepout, viewWorkspace)
        rlAgent.PlotCloud(cloud)

        if showSteps:
            raw_input("Point cloud.")

        # detect grasps in the sensory data
        graspsDetected = rlAgent.DetectGrasps(cloud, viewPoints,
                                              viewPointIndices, nGraspSamples,
                                              graspScoreThresh, nGraspInliers,
                                              graspDetectMode)
        grasps = rlAgent.FilterGraspsWithNoPoints(graspsDetected, objCloud)
        if len(graspsDetected) > len(grasps):
            print("Fitlered {} empty grasps.".format(
                len(graspsDetected) - len(grasps)))
        rlAgent.PlotGrasps(grasps)

        if showSteps:
            raw_input("Acquired grasps.")

        if len(grasps) == 0:
            print("No grasps found. Skipping iteration.")
            rlEnv.RemoveObjectSet(objHandles)
            rlAgent.UnplotGrasps()
            rlAgent.UnplotCloud()
            continue

        # perform pick action
        grasp = rlAgent.GetGrasp(grasps, epsilon)
        rlAgent.PlotGrasps([grasp])

        if showSteps:
            raw_input("Selected grasp.")

        # perform place action
        P = rlAgent.GetPlacePose(grasp, epsilon)
        rlAgent.MoveHandToPose(P)
        objHandle, objPose = rlEnv.GetObjectWithMaxGraspPoints(
            grasp, objHandles, objCloud, objCloudIdxs)
        rlAgent.MoveObjectToHandAtGrasp(grasp, objHandle)
        r = rlEnv.RewardHeightExponential(objHandle, targetObjectAxis,
                                          maxAngleFromObjectAxis,
                                          maxObjectTableGap)
        print("The robot receives {} reward.".format(r))
        Return.append(r)

        if showSteps:
            raw_input("Press [Enter] to continue...")

        # cleanup this data iteration
        rlEnv.RemoveObjectSet(objHandles)
        rlAgent.UnplotGrasps()
        rlAgent.UnplotCloud()

        # Save results
        saveData = {
            "nObjects": nObjects,
            "randomObjectScale": randomObjectScale,
            "targetObjectAxis": targetObjectAxis,
            "maxAngleFromObjectAxis": maxAngleFromObjectAxis,
            "maxObjectTableGap": maxObjectTableGap,
            "graspDetectMode": graspDetectMode,
            "nGraspSamples": nGraspSamples,
            "graspScoreThresh": graspScoreThresh,
            "weightsFileName": weightsFileName,
            "nDataIterations": nDataIterations,
            "epsilon": epsilon,
            "Return": Return
        }
        savemat(saveFileName, saveData)