Beispiel #1
0
class CollectBoost(BaseAction):
    action = None

    def get_output(self, info: Game) -> SimpleControllerState:
        car = info.my_car
        if not self.action:
            self.action = Drive(car)

        boost_pad = closest_available_boost(car.location, info.pads)

        if boost_pad is None:
            # All boost pads are inactive.
            return self.controls

        self.action.target = boost_pad.location

        self.action.step(info.time_delta)
        self.controls = self.action.controls

        return self.controls

    def get_possible(self, info: Game):
        return True

    def update_status(self, info: Game):
        if info.my_car.boost == 100:
            self.finished = True
Beispiel #2
0
class Kickoff:
    def __init__(self, car: Car, info: Game):
        self.car: Car = car
        self.info: Game = info
        self.controls = Input()
        self.drive = Drive(car)

    def step(self, dt):
        self.drive.target = self.info.ball.position
        self.drive.speed = 1500
        self.drive.step(self.info.time_delta)
        self.controls = self.drive.controls
Beispiel #3
0
class Derevo(BaseAgent):
    """Main bot class"""
    def __init__(self, name, team, index):
        """Initializing all parameters of the bot"""
        super().__init__(name, team, index)
        Game.set_mode("soccar")
        self.game = Game(index, team)
        self.name = name
        self.team = team
        self.index = index
        self.drive = None
        self.dodge = None
        self.controls = SimpleControllerState()
        self.kickoff = False
        self.prev_kickoff = False
        self.kickoffStart = None
        self.step = None

    def initialize_agent(self):
        """Initializing all parameters which require the field info"""
        init_boostpads(self)
        self.drive = Drive(self.game.my_car)
        self.dodge = Dodge(self.game.my_car)

    def get_output(self, packet: GameTickPacket) -> SimpleControllerState:
        """The main method which receives the packets and outputs the controls"""
        self.game.read_game_information(packet, self.get_rigid_body_tick(),
                                        self.get_field_info())
        update_boostpads(self, packet)
        self.prev_kickoff = self.kickoff
        self.kickoff = packet.game_info.is_kickoff_pause and norm(
            vec2(self.game.ball.location - vec3(0, 0, 0))) < 100
        if self.kickoff and not self.prev_kickoff:
            init_kickoff(self)
            self.prev_kickoff = True
        elif self.kickoff or self.step is Step.Dodge_2:
            kick_off(self)
        else:
            self.drive.target = self.game.ball.location
            self.drive.speed = 1410
            self.drive.step(self.game.time_delta)
            self.controls = self.drive.controls
        if not packet.game_info.is_round_active:
            self.controls.steer = 0
        return self.controls
Beispiel #4
0
class Agent(BaseAgent):
    def __init__(self, name, team, index):
        self.game = Game(index, team)
        self.controls = SimpleControllerState()
        self.action = None

    def get_output(self, packet: GameTickPacket) -> SimpleControllerState:
        self.game.read_game_information(packet, self.get_rigid_body_tick(),
                                        self.get_field_info())

        if not self.action:
            self.action = Drive(self.game.my_car)
            self.action.speed = 1400

        self.action.target = self.game.ball.location
        self.action.step(self.game.time_delta)

        self.controls = self.action.controls

        return self.controls
Beispiel #5
0
class CustomDrive:

    def __init__(self, car):
        self.car = car
        self.target = vec3(0, 0, 0)
        self.speed = 2300
        self.controls = SimpleControllerState()
        self.finished = False
        self.rlu_drive = RLUDrive(self.car)
        self.update_rlu_drive()
        self.power_turn = True  # Handbrake while reversing to turn around quickly

    def step(self, dt: float):
        self.update_rlu_drive()
        self.rlu_drive.step(dt)
        self.finished = self.rlu_drive.finished

        car_to_target = (self.target - self.car.position)
        local_target = dot(car_to_target, self.car.orientation)
        angle = atan2(local_target[1], local_target[0])

        self.controls = self.rlu_drive.controls
        reverse = (cos(angle) < 0)
        if reverse:
            angle = -invert_angle(angle)
            if self.power_turn:
                self.controls.throttle = (-self.controls.throttle - 1) / 2
                angle *= -1
            else:
                self.controls.throttle = -1
            self.controls.steer = cap(angle * 3, -1, 1)
            self.controls.boost = False
        self.controls.handbrake = (abs(angle) > radians(70))

    def update_rlu_drive(self):
        self.target = self.target
        self.rlu_drive.target = self.target
        self.rlu_drive.speed = self.speed
Beispiel #6
0
class GetToAirPoint:
    """Drive towards the point, jump and start hovering when near enough."""

    def __init__(self, car: Car, info: Game):
        self.target: vec3 = None
        self.car: Car = car
        self.info = info

        self.hover = Hover(car)
        self.drive = Drive(car)
        
        self.controls: Input = Input()

        self.__time_spent_on_ground = 0.0

    def step(self, dt):
        if self.car.on_ground and norm(self.car.position + self.car.velocity - xy(self.target)) > 2500:
            self.drive.speed = 1000
            self.drive.target = self.target
            self.drive.step(dt)
            self.controls = self.drive.controls
            self.controls.handbrake = angle_between(self.car.forward(), self.target - self.car.position) > 1.2
            return

        self.hover.target = self.target
        self.hover.up = normalize(self.car.position * -1)
        self.hover.step(dt)
        self.controls = self.hover.controls

        self.controls.throttle = not self.car.on_ground
        self.controls.jump = (self.car.position[2] < 30 or self.car.on_ground) and self.__time_spent_on_ground > 0.1

        if self.info.round_active:
            self.__time_spent_on_ground += dt
        if not self.car.on_ground:
            self.__time_spent_on_ground = 0.0
Beispiel #7
0
class MyAgent(BaseAgent):
    def __init__(self, name, team, index):
        super().__init__(name, team, index)
        self.game = Game(index, team)
        self.name = name
        self.controls = SimpleControllerState()

        self.timer = 0.0

        self.drive = Drive(self.game.my_car)
        self.navigator = None
        self.dodge = None
        self.turn = None
        self.state = State.RESET

    def get_output(self, packet: GameTickPacket) -> SimpleControllerState:

        self.game.read_game_information(packet, self.get_rigid_body_tick(),
                                        self.get_field_info())
        self.controls = SimpleControllerState()

        next_state = self.state

        if self.state == State.RESET:
            self.timer = 0.0
            self.set_gamestate_straight_moving()
            # self.set_gamestate_angled_stationary()
            # self.set_gamestate_straight_moving_towards()
            next_state = State.WAIT

        if self.state == State.WAIT:

            if self.timer > 0.2:
                next_state = State.INITIALIZE

        if self.state == State.INITIALIZE:
            self.drive = Drive(self.game.my_car)
            self.drive.target, self.drive.speed = self.game.ball.location, 2300
            next_state = State.DRIVING

        if self.state == State.DRIVING:
            self.drive.target = self.game.ball.location
            self.drive.step(self.game.time_delta)
            self.controls = self.drive.controls
            can_dodge, simulated_duration, simulated_target = self.simulate()
            if can_dodge:
                self.dodge = Dodge(self.game.my_car)
                self.turn = AerialTurn(self.game.my_car)
                print("============")
                print(simulated_duration)
                self.dodge.duration = simulated_duration - 0.1
                self.dodge.target = simulated_target
                self.timer = 0
                next_state = State.DODGING

        if self.state == State.DODGING:
            self.dodge.step(self.game.time_delta)
            self.controls = self.dodge.controls
            if self.game.time == packet.game_ball.latest_touch.time_seconds:
                print(self.timer)
            if self.dodge.finished and self.game.my_car.on_ground:
                next_state = State.RESET

        self.timer += self.game.time_delta
        self.state = next_state

        return self.controls

    def simulate(self):
        ball_prediction = self.get_ball_prediction_struct()
        duration_estimate = math.floor(
            get_time_at_height(self.game.ball.location[2], 0.2) * 10) / 10
        for i in range(6):
            car = Car(self.game.my_car)
            ball = Ball(self.game.ball)
            batmobile = obb()
            batmobile.half_width = vec3(64.4098892211914, 42.335182189941406,
                                        14.697200775146484)
            batmobile.center = car.location + dot(car.rotation,
                                                  vec3(9.01, 0, 12.09))
            batmobile.orientation = car.rotation
            dodge = Dodge(car)
            dodge.duration = duration_estimate + i / 60
            dodge.target = ball.location
            for j in range(round(60 * dodge.duration)):
                dodge.target = ball.location
                dodge.step(1 / 60)
                car.step(dodge.controls, 1 / 60)
                prediction_slice = ball_prediction.slices[j]
                physics = prediction_slice.physics
                ball_location = vec3(physics.location.x, physics.location.y,
                                     physics.location.z)
                dodge.target = ball_location
                batmobile.center = car.location + dot(car.rotation,
                                                      vec3(9.01, 0, 12.09))
                batmobile.orientation = car.rotation
                if intersect(sphere(ball_location, 93.15), batmobile) and abs(
                        ball_location[2] - car.location[2]
                ) < 25 and car.location[2] < ball_location[2]:
                    return True, j / 60, ball_location
        return False, None, None

    def set_gamestate_straight_moving(self):
        # put the car in the middle of the field
        car_state = CarState(
            physics=Physics(location=Vector3(0, -1000, 18),
                            velocity=Vector3(0, 0, 0),
                            rotation=Rotator(0, math.pi / 2, 0),
                            angular_velocity=Vector3(0, 0, 0)))

        # put the ball in the middle of the field

        ball_state = BallState(
            physics=Physics(location=Vector3(0, 1500, 93),
                            velocity=Vector3(0, random.randint(-250, 800),
                                             random.randint(700, 800)),
                            rotation=Rotator(0, 0, 0),
                            angular_velocity=Vector3(0, 0, 0)))

        self.set_game_state(
            GameState(ball=ball_state, cars={self.game.id: car_state}))

    def set_gamestate_straight_moving_towards(self):
        # put the car in the middle of the field
        car_state = CarState(physics=Physics(
            location=Vector3(0, 0, 18),
            velocity=Vector3(0, 0, 0),
            angular_velocity=Vector3(0, 0, 0),
        ))

        # put the ball in the middle of the field

        ball_state = BallState(physics=Physics(
            location=Vector3(0, 2500, 93),
            velocity=Vector3(0, -250, 700),
            rotation=Rotator(0, 0, 0),
            angular_velocity=Vector3(0, 0, 0),
        ))

        self.set_game_state(
            GameState(ball=ball_state, cars={self.game.id: car_state}))

    def set_gamestate_angled_stationary(self):
        # put the car in the middle of the field
        car_state = CarState(
            physics=Physics(location=Vector3(-1000, -1500, 18),
                            velocity=Vector3(0, 0, 0),
                            rotation=Rotator(0, math.pi / 8, 0),
                            angular_velocity=Vector3(0, 0, 0)))

        # put the ball in the middle of the field

        ball_state = BallState(
            physics=Physics(location=Vector3(0, 0, 750),
                            velocity=Vector3(0, 0, 1),
                            rotation=Rotator(0, 0, 0),
                            angular_velocity=Vector3(0, 0, 0)))

        self.set_game_state(
            GameState(ball=ball_state, cars={self.game.id: car_state}))
Beispiel #8
0
class MyAgent(BaseAgent):
    def __init__(self, name, team, index):
        super().__init__(name, team, index)
        Game.set_mode("soccar")
        self.game = Game(index, team)
        self.name = name
        self.controls = SimpleControllerState()
        self.timer = 0.0

        self.drive = Drive(self.game.my_car)
        self.dodge = None
        self.turn = None
        self.state = State.RESET

    def get_output(self, packet: GameTickPacket) -> SimpleControllerState:

        # Update the game values and set the state
        self.game.read_game_information(packet, self.get_field_info())
        self.controls = SimpleControllerState()

        next_state = self.state

        # Reset everything
        if self.state == State.RESET:
            self.timer = 0.0
            # self.set_gamestate_straight_moving()
            # self.set_gamestate_straight_moving_towards()
            self.set_state_stationary_angled()
            # self.set_gamestate_angled_stationary()
            # self.set_state_stationary()
            next_state = State.WAIT

        # Wait so everything can settle in, mainly for ball prediction
        if self.state == State.WAIT:
            if self.timer > 0.2:
                next_state = State.INITIALIZE

        # Initialize the drive mechanic
        if self.state == State.INITIALIZE:
            self.drive = Drive(self.game.my_car)
            self.drive.target = self.game.ball.position
            self.drive.speed = 1400
            next_state = State.DRIVING

        # Start driving towards the target and check whether a dodge is possible, if so initialize the dodge
        if self.state == State.DRIVING:
            self.drive.target = self.game.ball.position
            self.drive.step(self.game.time_delta)
            self.controls = self.drive.controls
            a = time.time()
            target = self.game.my_car.position + 1000000 * (
                self.game.ball.position - self.game.my_car.position)
            can_dodge, simulated_duration, simulated_target = self.simulate()
            print(time.time() - a)
            if can_dodge:
                self.dodge = Dodge(self.game.my_car)
                self.turn = AerialTurn(self.game.my_car)
                self.dodge.duration = simulated_duration - 0.1
                self.dodge.target = simulated_target

                self.dodge.preorientation = look_at(simulated_target,
                                                    vec3(0, 0, 1))
                self.timer = 0
                next_state = State.DODGING

        # Perform the dodge
        if self.state == State.DODGING:
            self.dodge.step(self.game.time_delta)
            self.controls = self.dodge.controls

            T = self.dodge.duration - self.dodge.timer
            if T > 0:
                if self.dodge.timer < 0.2:
                    self.controls.boost = 1
                    # self.controls.pitch = 1
                else:
                    xf = self.game.my_car.position + 0.5 * T * T * vec3(
                        0, 0, -650) + T * self.game.my_car.velocity

                    delta_x = self.game.ball.position - xf
                    if angle_between(vec2(self.game.my_car.forward()),
                                     self.dodge.direction) < 0.3:
                        if norm(delta_x) > 50:
                            self.controls.boost = 1
                            self.controls.throttle = 0.0
                        else:
                            self.controls.boost = 0
                            self.controls.throttle = clip(
                                0.5 * (200 / 3) * T * T, 0.0, 1.0)
                    else:
                        self.controls.boost = 0
                        self.controls.throttle = 0.0
            else:
                self.controls.boost = 0

            # Great line
            # if self.game.time == packet.game_ball.latest_touch.time_seconds:
            #     print(self.game.my_car.position)
            if self.dodge.finished and self.game.my_car.on_ground:
                next_state = State.RESET

        self.timer += self.game.time_delta
        self.state = next_state

        return self.controls

    # The miraculous simulate function
    # TODO optimize heavily in case I actually need it
    # Option one: estimate the time for the current height and look at that ball prediction.
    # If its heigher use that unless it gets unreachable and else compare with the lower one.
    # If duration_estimate = 0.8 and the ball is moving up there is not sense in even simulating it.
    # Might even lower it since the higher the duration estimate the longer the simulation takes.
    def simulate(self, global_target=None):
        lol = 0
        # Initialize the ball prediction
        # Estimate the probable duration of the jump and round it down to the floor decimal
        ball_prediction = self.get_ball_prediction_struct()
        if self.game.my_car.boost < 6:
            duration_estimate = math.floor(
                get_time_at_height(self.game.ball.position[2]) * 10) / 10
        else:
            adjacent = norm(
                vec2(self.game.my_car.position - self.game.ball.position))
            opposite = (self.game.ball.position[2] -
                        self.game.my_car.position[2])
            theta = math.atan(opposite / adjacent)
            t = get_time_at_height_boost(self.game.ball.position[2], theta,
                                         self.game.my_car.boost)
            duration_estimate = (math.ceil(t * 10) / 10)
        # Loop for 6 frames meaning adding 0.1 to the estimated duration. Keeps the time constraint under 0.3s
        for i in range(6):
            # Copy the car object and reset the values for the hitbox
            car = Car(self.game.my_car)
            # Create a dodge object on the copied car object
            # Direction is from the ball to the enemy goal
            # Duration is estimated duration plus the time added by the for loop
            # preorientation is the rotation matrix from the ball to the goal
            # TODO make it work on both sides
            #  Test with preorientation. Currently it still picks a low duration at a later time meaning it
            #  wont do any of the preorientation.
            dodge = Dodge(car)
            prediction_slice = ball_prediction.slices[round(
                60 * (duration_estimate + i / 60))]
            physics = prediction_slice.physics
            ball_location = vec3(physics.location.x, physics.location.y,
                                 physics.location.z)
            # ball_location = vec3(0, ball_y, ball_z)
            dodge.duration = duration_estimate + i / 60
            if dodge.duration > 1.4:
                break

            if global_target is not None:
                dodge.direction = vec2(global_target - ball_location)
                target = vec3(vec2(global_target)) + vec3(
                    0, 0, jeroens_magic_number * ball_location[2])
                dodge.preorientation = look_at(target - ball_location,
                                               vec3(0, 0, 1))
            else:
                dodge.target = ball_location
                dodge.direction = vec2(ball_location) + vec2(ball_location -
                                                             car.position)
                dodge.preorientation = look_at(ball_location, vec3(0, 0, 1))
            # Loop from now till the end of the duration
            fps = 30
            for j in range(round(fps * dodge.duration)):
                lol = lol + 1
                # Get the ball prediction slice at this time and convert the location to RLU vec3
                prediction_slice = ball_prediction.slices[round(60 * j / fps)]
                physics = prediction_slice.physics
                ball_location = vec3(physics.location.x, physics.location.y,
                                     physics.location.z)
                dodge.step(1 / fps)

                T = dodge.duration - dodge.timer
                if T > 0:
                    if dodge.timer < 0.2:
                        dodge.controls.boost = 1
                        dodge.controls.pitch = 1
                    else:
                        xf = car.position + 0.5 * T * T * vec3(
                            0, 0, -650) + T * car.velocity

                        delta_x = ball_location - xf
                        if angle_between(vec2(car.forward()),
                                         dodge.direction) < 0.3:
                            if norm(delta_x) > 50:
                                dodge.controls.boost = 1
                                dodge.controls.throttle = 0.0
                            else:
                                dodge.controls.boost = 0
                                dodge.controls.throttle = clip(
                                    0.5 * (200 / 3) * T * T, 0.0, 1.0)
                        else:
                            dodge.controls.boost = 0
                            dodge.controls.throttle = 0.0
                else:
                    dodge.controls.boost = 0

                car.step(dodge.controls, 1 / fps)
                succesfull = self.dodge_succesfull(car, ball_location, dodge)
                if succesfull is not None:
                    if succesfull:
                        return True, j / fps, ball_location
                    else:
                        break
        return False, None, None

    def dodge_succesfull(self, car, ball_location, dodge):
        batmobile = obb()
        batmobile.half_width = vec3(64.4098892211914, 42.335182189941406,
                                    14.697200775146484)
        batmobile.center = car.position + dot(car.orientation,
                                              vec3(9.01, 0, 12.09))
        batmobile.orientation = car.orientation
        ball = sphere(ball_location, 93.15)
        b_local = dot(ball.center - batmobile.center, batmobile.orientation)

        closest_local = vec3(
            min(max(b_local[0], -batmobile.half_width[0]),
                batmobile.half_width[0]),
            min(max(b_local[1], -batmobile.half_width[1]),
                batmobile.half_width[1]),
            min(max(b_local[2], -batmobile.half_width[2]),
                batmobile.half_width[2]))

        hit_location = dot(batmobile.orientation,
                           closest_local) + batmobile.center
        if norm(hit_location - ball.center) > ball.radius:
            return None
        # if abs(ball_location[2] - hit_location[2]) < 25 and hit_location[2] < ball_location[2]:
        if abs(ball_location[2] - hit_location[2]) < 25:
            if closest_local[0] > 35 and -12 < closest_local[2] < 12:
                hit_check = True
            else:
                print("local: ", closest_local)
                hit_check = True
        else:
            hit_check = False
        # Seems to work without angle_check. No clue why though
        angle_car_simulation = angle_between(car.orientation,
                                             self.game.my_car.orientation)
        angle_simulation_target = angle_between(car.orientation,
                                                dodge.preorientation)
        angle_check = angle_simulation_target < angle_car_simulation or angle_simulation_target < 0.1
        return hit_check

    """" State setting methods for various situations"""

    def set_gamestate_straight_moving(self):
        # put the car in the middle of the field
        car_state = CarState(
            physics=Physics(location=Vector3(0, -1000, 18),
                            velocity=Vector3(0, 0, 0),
                            rotation=Rotator(0, math.pi / 2, 0),
                            angular_velocity=Vector3(0, 0, 0)))

        # put the ball in the middle of the field

        ball_state = BallState(
            physics=Physics(location=Vector3(0, 1500, 93),
                            velocity=Vector3(200, 650, 750),
                            rotation=Rotator(0, 0, 0),
                            angular_velocity=Vector3(0, 0, 0)))

        self.set_game_state(
            GameState(ball=ball_state, cars={self.game.id: car_state}))

    def set_gamestate_straight_moving_towards(self):
        # put the car in the middle of the field
        car_state = CarState(physics=Physics(
            location=Vector3(0, 0, 18),
            velocity=Vector3(0, 0, 0),
            rotation=Rotator(0, math.pi / 2, 0),
            angular_velocity=Vector3(0, 0, 0),
        ),
                             boost_amount=50)

        # put the ball in the middle of the field

        ball_state = BallState(physics=Physics(
            location=Vector3(0, 2500, 93),
            velocity=Vector3(0, -250, 500),
            rotation=Rotator(0, 0, 0),
            angular_velocity=Vector3(0, 0, 0),
        ))

        self.set_game_state(
            GameState(ball=ball_state, cars={self.game.id: car_state}))

    def set_gamestate_angled_stationary(self):
        # put the car in the middle of the field
        car_state = CarState(
            physics=Physics(location=Vector3(-1000, -2000, 18),
                            velocity=Vector3(0, 0, 0),
                            rotation=Rotator(0, math.pi / 8, 0),
                            angular_velocity=Vector3(0, 0, 0)))

        # put the ball in the middle of the field

        ball_state = BallState(
            physics=Physics(location=Vector3(0, 0, 600),
                            velocity=Vector3(0, 0, 1),
                            rotation=Rotator(0, 0, 0),
                            angular_velocity=Vector3(0, 0, 0)))

        self.set_game_state(
            GameState(ball=ball_state, cars={self.game.id: car_state}))

    def set_state_stationary(self):
        # put the car in the middle of the field
        car_state = CarState(physics=Physics(
            location=Vector3(0, -2500, 18),
            velocity=Vector3(0, 0, 0),
            rotation=Rotator(0, math.pi / 2, 0),
            angular_velocity=Vector3(0, 0, 0),
        ),
                             boost_amount=100)

        # put the ball in the middle of the field
        ball_state = BallState(physics=Physics(
            location=Vector3(0, ball_y, ball_z),
            velocity=Vector3(0, 0, 0),
            angular_velocity=Vector3(0, 0, 0),
        ))

        self.set_game_state(
            GameState(ball=ball_state, cars={self.game.id: car_state}))

    def set_state_stationary_angled(self):
        # put the car in the middle of the field
        car_state = CarState(physics=Physics(
            location=Vector3(0, -2500, 18),
            velocity=Vector3(0, 0, 0),
            rotation=Rotator(0, math.pi / 2, 0),
            angular_velocity=Vector3(0, 0, 0),
        ),
                             boost_amount=100)

        # put the ball in the middle of the field
        ball_state = BallState(physics=Physics(
            location=Vector3(1500, 0, 93),
            velocity=Vector3(0, 0, 750),
            angular_velocity=Vector3(0, 0, 0),
        ))

        self.set_game_state(
            GameState(ball=ball_state, cars={self.game.id: car_state}))
Beispiel #9
0
class CustomDrive:
    def __init__(self, car):
        self.car = car
        self.target = vec3(0, 0, 0)
        self.speed = 2300
        self.controls = SimpleControllerState()
        self.finished = False
        self.rlu_drive = RLUDrive(self.car)
        self.update_rlu_drive()
        self.power_turn = True  # Handbrake while reversing to turn around quickly
        self.aerial_turn = AerialTurn(car)
        self.kickoff = False

    def step(self, dt: float):
        self.speed = abs(self.speed)
        car_to_target = (self.target - self.car.location)
        local_target = dot(car_to_target, self.car.rotation)
        angle = atan2(local_target[1], local_target[0])
        vel = norm(self.car.velocity)
        in_air = (not self.car.on_ground)
        on_wall = (self.car.location[2] > 250 and not in_air)

        reverse = (cos(angle) < 0 and not (on_wall or in_air or self.kickoff))

        get_off_wall = (on_wall and local_target[2] > 450)
        if get_off_wall:
            car_to_target[2] = -self.car.location[2]
            local_target = dot(car_to_target, self.car.rotation)
            angle = atan2(local_target[1], local_target[0])

        max_speed = self.determine_max_speed(local_target)

        self.update_rlu_drive(reverse, max_speed)
        self.rlu_drive.step(dt)
        self.finished = self.rlu_drive.finished

        self.controls = self.rlu_drive.controls
        self.controls.handbrake = False

        if reverse:
            angle = -invert_angle(angle)
            if self.power_turn and not on_wall:
                angle *= -1
                self.controls.handbrake = (vel > 200)
            self.controls.steer = cap(angle * 3, -1, 1)
            self.controls.boost = False
        if not self.controls.handbrake:
            self.controls.handbrake = (abs(angle) > radians(70) and vel > 500
                                       and not on_wall)
        if self.controls.handbrake:
            self.controls.handbrake = (dot(self.car.velocity, car_to_target) >
                                       -150)

        if in_air:
            self.aerial_turn.target = look_at(xy(car_to_target), vec3(0, 0, 1))
            self.aerial_turn.step(dt)
            aerial_turn_controls = self.aerial_turn.controls
            self.controls.pitch = aerial_turn_controls.pitch
            self.controls.yaw = aerial_turn_controls.yaw
            self.controls.roll = aerial_turn_controls.roll
            self.controls.boost = False

    def update_rlu_drive(self, reverse: bool = False, max_speed: float = 2200):
        self.target = self.target
        self.rlu_drive.target = self.target
        self.rlu_drive.speed = cap(self.speed * (-1 if reverse else 1),
                                   -max_speed, max_speed)

    def determine_max_speed(self, local_target):
        low = 100
        high = 2200
        if self.kickoff:
            return high
        for i in range(5):
            mid = (low + high) / 2
            radius = (1 / RLUDrive.max_turning_curvature(mid))
            local_circle = vec3(0, copysign(radius, local_target[1]), 0)
            dist = norm(local_circle - xy(local_target))
            if dist < radius:
                high = mid
            else:
                low = mid
        return high