def main(args): config = load_config(args.config) check_channels(config) check_classes(config) palette = make_palette([classe["color"] for classe in config["classes"]]) args.workers = torch.cuda.device_count() * 2 if torch.device( "cuda") and not args.workers else args.workers cover = [tile for tile in tiles_from_csv(os.path.expanduser(args.cover)) ] if args.cover else None log = Logs(os.path.join(args.out, "log")) if torch.cuda.is_available(): log.log("RoboSat.pink - predict on {} GPUs, with {} workers".format( torch.cuda.device_count(), args.workers)) log.log("(Torch:{} Cuda:{} CudNN:{})".format( torch.__version__, torch.version.cuda, torch.backends.cudnn.version())) device = torch.device("cuda") torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True else: log.log("RoboSat.pink - predict on CPU, with {} workers".format( args.workers)) log.log("") log.log("============================================================") log.log("WARNING: Are you -really- sure about not predicting on GPU ?") log.log("============================================================") log.log("") device = torch.device("cpu") chkpt = torch.load(args.checkpoint, map_location=device) model_module = load_module("robosat_pink.models.{}".format( chkpt["nn"].lower())) nn = getattr(model_module, chkpt["nn"])(chkpt["shape_in"], chkpt["shape_out"]).to(device) nn = torch.nn.DataParallel(nn) nn.load_state_dict(chkpt["state_dict"]) nn.eval() log.log("Model {} - UUID: {}".format(chkpt["nn"], chkpt["uuid"])) mode = "predict" if not args.translate else "predict_translate" loader_module = load_module("robosat_pink.loaders.{}".format( chkpt["loader"].lower())) loader_predict = getattr(loader_module, chkpt["loader"])(config, chkpt["shape_in"][1:3], args.dataset, cover, mode=mode) loader = DataLoader(loader_predict, batch_size=args.bs, num_workers=args.workers) assert len(loader), "Empty predict dataset directory. Check your path." tiled = [] with torch.no_grad( ): # don't track tensors with autograd during prediction for images, tiles in tqdm(loader, desc="Eval", unit="batch", ascii=True): images = images.to(device) outputs = nn(images) probs = torch.nn.functional.softmax(outputs, dim=1).data.cpu().numpy() for tile, prob in zip(tiles, probs): x, y, z = list(map(int, tile)) mask = np.around(prob[1:, :, :]).astype(np.uint8).squeeze() if args.translate: tile_translate_to_file(args.out, mercantile.Tile(x, y, z), palette, mask) else: tile_label_to_file(args.out, mercantile.Tile(x, y, z), palette, mask) tiled.append(mercantile.Tile(x, y, z)) if not args.no_web_ui and not args.translate: template = "leaflet.html" if not args.web_ui_template else args.web_ui_template base_url = args.web_ui_base_url if args.web_ui_base_url else "." web_ui(args.out, base_url, tiled, tiled, "png", template)
def main(args): config = load_config(args.config) args.out = os.path.expanduser(args.out) config["model"][ "loader"] = args.loader if args.loader else config["model"]["loader"] config["model"]["bs"] = args.bs if args.bs else config["model"]["bs"] config["model"]["lr"] = args.lr if args.lr else config["model"]["lr"] config["model"]["ts"] = tuple(map( int, args.ts.split(","))) if args.ts else config["model"]["ts"] config["model"]["nn"] = args.nn if args.nn else config["model"]["nn"] config["model"]["encoder"] = args.encoder if args.encoder else config[ "model"]["encoder"] config["model"][ "loss"] = args.loss if args.loss else config["model"]["loss"] config["model"]["da"] = args.da if args.da else config["model"]["da"] config["model"]["dap"] = args.dap if args.dap else config["model"]["dap"] args.workers = config["model"]["bs"] if not args.workers else args.workers check_classes(config) check_channels(config) check_model(config) assert os.path.isdir(os.path.expanduser( args.dataset)), "Dataset is not a directory" if args.no_training and args.no_validation: sys.exit() log = Logs(os.path.join(args.out, "log")) csv_train = None if args.no_training else open( os.path.join(args.out, "training.csv"), mode="a") csv_val = None if args.no_validation else open( os.path.join(args.out, "validation.csv"), mode="a") if torch.cuda.is_available(): log.log("RoboSat.pink - training on {} GPUs, with {} workers".format( torch.cuda.device_count(), args.workers)) log.log("(Torch:{} Cuda:{} CudNN:{})".format( torch.__version__, torch.version.cuda, torch.backends.cudnn.version())) device = torch.device("cuda") torch.backends.cudnn.benchmark = True else: log.log("RoboSat.pink - training on CPU, with {} workers - (Torch:{})". format(args.workers, torch.__version__)) log.log("") log.log("==========================================================") log.log("WARNING: Are you -really- sure about not training on GPU ?") log.log("==========================================================") log.log("") device = torch.device("cpu") log.log("--- Input tensor from Dataset: {} ---".format(args.dataset)) num_channel = 1 # 1-based numerotation for channel in config["channels"]: for band in channel["bands"]: log.log("Channel {}:\t\t {}[band: {}]".format( num_channel, channel["name"], band)) num_channel += 1 log.log("--- Output Classes ---") for c, classe in enumerate(config["classes"]): log.log("Class {}:\t\t {}".format(c, classe["title"])) log.log("--- Hyper Parameters ---") for hp in config["model"]: log.log("{}{}".format(hp.ljust(25, " "), config["model"][hp])) loader = load_module("robosat_pink.loaders.{}".format( config["model"]["loader"].lower())) loader_train = getattr(loader, config["model"]["loader"])( config, config["model"]["ts"], os.path.join(args.dataset, "training"), None, "train") loader_val = getattr(loader, config["model"]["loader"])( config, config["model"]["ts"], os.path.join(args.dataset, "validation"), None, "train") encoder = config["model"]["encoder"].lower() nn_module = load_module("robosat_pink.nn.{}".format( config["model"]["nn"].lower())) nn = getattr(nn_module, config["model"]["nn"])(loader_train.shape_in, loader_train.shape_out, encoder, config).to(device) nn = torch.nn.DataParallel(nn) optimizer = Adam(nn.parameters(), lr=config["model"]["lr"]) resume = 0 if args.checkpoint: chkpt = torch.load(os.path.expanduser(args.checkpoint), map_location=device) nn.load_state_dict(chkpt["state_dict"]) log.log("--- Using Checkpoint ---") log.log("Path:\t\t {}".format(args.checkpoint)) log.log("UUID:\t\t {}".format(chkpt["uuid"])) if args.resume: optimizer.load_state_dict(chkpt["optimizer"]) resume = chkpt["epoch"] assert resume < args.epochs, "Epoch asked, already reached by the given checkpoint" loss_module = load_module("robosat_pink.losses.{}".format( config["model"]["loss"].lower())) criterion = getattr(loss_module, config["model"]["loss"])().to(device) bs = config["model"]["bs"] train_loader = DataLoader(loader_train, batch_size=bs, shuffle=True, drop_last=True, num_workers=args.workers) val_loader = DataLoader(loader_val, batch_size=bs, shuffle=False, drop_last=True, num_workers=args.workers) if args.no_training: epoch = 0 process(val_loader, config, log, csv_val, epoch, device, nn, criterion, "eval") sys.exit() for epoch in range(resume + 1, args.epochs + 1): # 1-N based UUID = uuid.uuid1() log.log("---{}Epoch: {}/{} -- UUID: {}".format(os.linesep, epoch, args.epochs, UUID)) process(train_loader, config, log, csv_train, epoch, device, nn, criterion, "train", optimizer) try: # https://github.com/pytorch/pytorch/issues/9176 nn_doc = nn.module.doc nn_version = nn.module.version except AttributeError: nn_doc = nn.doc nn_version = nn.version states = { "uuid": UUID, "model_version": nn_version, "producer_name": "RoboSat.pink", "producer_version": rsp.__version__, "model_licence": "MIT", "domain": "pink.RoboSat", # reverse-DNS "doc_string": nn_doc, "shape_in": loader_train.shape_in, "shape_out": loader_train.shape_out, "state_dict": nn.state_dict(), "epoch": epoch, "nn": config["model"]["nn"], "encoder": config["model"]["encoder"], "optimizer": optimizer.state_dict(), "loader": config["model"]["loader"], } checkpoint_path = os.path.join(args.out, "checkpoint-{:05d}.pth".format(epoch)) if epoch == args.epochs or not (epoch % args.saving): log.log("[Saving checkpoint]") torch.save(states, checkpoint_path) if not args.no_validation: process(val_loader, config, log, csv_val, epoch, device, nn, criterion, "eval")
def main(args): tiles = list(tiles_from_csv(args.cover)) os.makedirs(os.path.expanduser(args.out), exist_ok=True) if not args.workers: args.workers = max(1, math.floor(os.cpu_count() * 0.5)) log = Logs(os.path.join(args.out, "log"), out=sys.stderr) log.log( "RoboSat.pink - download with {} workers, at max {} req/s, from: {}". format(args.workers, args.rate, args.url)) already_dl = 0 dl = 0 with requests.Session() as session: progress = tqdm(total=len(tiles), ascii=True, unit="image") with futures.ThreadPoolExecutor(args.workers) as executor: def worker(tile): tick = time.monotonic() progress.update() try: x, y, z = map(str, [tile.x, tile.y, tile.z]) os.makedirs(os.path.join(args.out, z, x), exist_ok=True) except: return tile, None, False path = os.path.join(args.out, z, x, "{}.{}".format(y, args.format)) if os.path.isfile(path): # already downloaded return tile, None, True if args.type == "XYZ": url = args.url.format(x=tile.x, y=tile.y, z=tile.z) elif args.type == "TMS": y = (2**tile.z) - tile.y - 1 url = args.url.format(x=tile.x, y=y, z=tile.z) elif args.type == "WMS": xmin, ymin, xmax, ymax = xy_bounds(tile) url = args.url.format(xmin=xmin, ymin=ymin, xmax=xmax, ymax=ymax) res = tile_image_from_url(session, url, args.timeout) if res is None: # let's retry once res = tile_image_from_url(session, url, args.timeout) if res is None: return tile, url, False try: tile_image_to_file(args.out, tile, res) except OSError: return tile, url, False tock = time.monotonic() time_for_req = tock - tick time_per_worker = args.workers / args.rate if time_for_req < time_per_worker: time.sleep(time_per_worker - time_for_req) return tile, url, True for tile, url, ok in executor.map(worker, tiles): if url and ok: dl += 1 elif not url and ok: already_dl += 1 else: log.log("Warning:\n {} failed, skipping.\n {}\n".format( tile, url)) if already_dl: log.log( "Notice: {} tiles were already downloaded previously, and so skipped now." .format(already_dl)) if already_dl + dl == len(tiles): log.log("Notice: Coverage is fully downloaded.") if not args.no_web_ui: template = "leaflet.html" if not args.web_ui_template else args.web_ui_template base_url = args.web_ui_base_url if args.web_ui_base_url else "./" web_ui(args.out, base_url, tiles, tiles, args.format, template)
def main(args): args.out = os.path.expanduser(args.out) if not args.workers: args.workers = os.cpu_count() print("RoboSat.pink - compare {} on CPU, with {} workers".format(args.mode, args.workers), file=sys.stderr, flush=True) if not args.masks or not args.labels: assert args.mode != "list", "Parameters masks and labels are mandatories in list mode." assert args.minimum_fg == 0.0 and args.maximum_fg == 100.0, "Both masks and labels mandatory in QoD filtering." assert args.minimum_qod == 0.0 and args.maximum_qod == 100.0, "Both masks and labels mandatory in QoD filtering." if args.images: tiles = [tile for tile in tiles_from_dir(args.images[0])] for image in args.images[1:]: assert sorted(tiles) == sorted([tile for tile in tiles_from_dir(image)]), "Unconsistent images directories" if args.labels and args.masks: tiles_masks = [tile for tile in tiles_from_dir(args.masks)] tiles_labels = [tile for tile in tiles_from_dir(args.labels)] if args.images: assert sorted(tiles) == sorted(tiles_masks) == sorted(tiles_labels), "Unconsistent images/label/mask directories" else: assert sorted(tiles_masks) == sorted(tiles_labels), "Label and Mask directories are not consistent" tiles = tiles_masks tiles_list = [] tiles_compare = [] progress = tqdm(total=len(tiles), ascii=True, unit="tile") log = False if args.mode == "list" else Logs(os.path.join(args.out, "log")) with futures.ThreadPoolExecutor(args.workers) as executor: def worker(tile): x, y, z = list(map(str, tile)) if args.masks and args.labels: label = np.array(Image.open(os.path.join(args.labels, z, x, "{}.png".format(y)))) mask = np.array(Image.open(os.path.join(args.masks, z, x, "{}.png".format(y)))) assert label.shape == mask.shape, "Inconsistent tiles (size or dimensions)" try: dist, fg_ratio, qod = compare(torch.as_tensor(label, device="cpu"), torch.as_tensor(mask, device="cpu")) except: progress.update() return False, tile if not args.minimum_fg <= fg_ratio <= args.maximum_fg or not args.minimum_qod <= qod <= args.maximum_qod: progress.update() return True, tile tiles_compare.append(tile) if args.mode == "side": for i, root in enumerate(args.images): img = tile_image_from_file(tile_from_xyz(root, x, y, z)[1]) if i == 0: side = np.zeros((img.shape[0], img.shape[1] * len(args.images), 3)) side = np.swapaxes(side, 0, 1) if args.vertical else side image_shape = img.shape else: assert image_shape[0:2] == img.shape[0:2], "Unconsistent image size to compare" if args.vertical: side[i * image_shape[0] : (i + 1) * image_shape[0], :, :] = img else: side[:, i * image_shape[0] : (i + 1) * image_shape[0], :] = img tile_image_to_file(args.out, tile, np.uint8(side)) elif args.mode == "stack": for i, root in enumerate(args.images): tile_image = tile_image_from_file(tile_from_xyz(root, x, y, z)[1]) if i == 0: image_shape = tile_image.shape[0:2] stack = tile_image / len(args.images) else: assert image_shape == tile_image.shape[0:2], "Unconsistent image size to compare" stack = stack + (tile_image / len(args.images)) tile_image_to_file(args.out, tile, np.uint8(stack)) elif args.mode == "list": tiles_list.append([tile, fg_ratio, qod]) progress.update() return True, tile for tile, ok in executor.map(worker, tiles): if not ok and log: log.log("Warning: skipping. {}".format(str(tile))) if args.mode == "list": with open(args.out, mode="w") as out: if args.geojson: out.write('{"type":"FeatureCollection","features":[') first = True for tile_list in tiles_list: tile, fg_ratio, qod = tile_list x, y, z = list(map(str, tile)) if args.geojson: prop = '"properties":{{"x":{},"y":{},"z":{},"fg":{:.1f},"qod":{:.1f}}}'.format(x, y, z, fg_ratio, qod) geom = '"geometry":{}'.format(json.dumps(feature(tile, precision=6)["geometry"])) out.write('{}{{"type":"Feature",{},{}}}'.format("," if not first else "", geom, prop)) first = False else: out.write("{},{},{}\t{:.1f}\t{:.1f}{}".format(x, y, z, fg_ratio, qod, os.linesep)) if args.geojson: out.write("]}") out.close() base_url = args.web_ui_base_url if args.web_ui_base_url else "." if args.mode == "side" and not args.no_web_ui: template = "compare.html" if not args.web_ui_template else args.web_ui_template web_ui(args.out, base_url, tiles, tiles_compare, args.format, template, union_tiles=False) if args.mode == "stack" and not args.no_web_ui: template = "leaflet.html" if not args.web_ui_template else args.web_ui_template tiles = [tile for tile in tiles_from_dir(args.images[0])] web_ui(args.out, base_url, tiles, tiles_compare, args.format, template)
def main(args): assert not (args.sql and args.geojson), "You can only use at once --pg OR --geojson." assert not (args.pg and not args.sql ), "With PostgreSQL --pg, --sql must also be provided" assert len(args.ts.split( ",")) == 2, "--ts expect width,height value (e.g 512,512)" config = load_config(args.config) check_classes(config) palette = make_palette([classe["color"] for classe in config["classes"]], complementary=True) index = [ config["classes"].index(classe) for classe in config["classes"] if classe["title"] == args.type ] assert index, "Requested type is not contains in your config file classes." burn_value = int(math.pow(2, index[0] - 1)) # 8bits One Hot Encoding assert 0 <= burn_value <= 128 args.out = os.path.expanduser(args.out) os.makedirs(args.out, exist_ok=True) log = Logs(os.path.join(args.out, "log"), out=sys.stderr) if args.geojson: tiles = [ tile for tile in tiles_from_csv(os.path.expanduser(args.cover)) ] assert tiles, "Empty cover" zoom = tiles[0].z assert not [tile for tile in tiles if tile.z != zoom ], "Unsupported zoom mixed cover. Use PostGIS instead" feature_map = collections.defaultdict(list) log.log("RoboSat.pink - rasterize - Compute spatial index") for geojson_file in args.geojson: with open(os.path.expanduser(geojson_file)) as geojson: feature_collection = json.load(geojson) srid = geojson_srid(feature_collection) feature_map = collections.defaultdict(list) for i, feature in enumerate( tqdm(feature_collection["features"], ascii=True, unit="feature")): feature_map = geojson_parse_feature( zoom, srid, feature_map, feature) features = args.geojson if args.pg: conn = psycopg2.connect(args.pg) db = conn.cursor() assert "limit" not in args.sql.lower(), "LIMIT is not supported" assert "TILE_GEOM" in args.sql, "TILE_GEOM filter not found in your SQL" sql = re.sub(r"ST_Intersects( )*\((.*)?TILE_GEOM(.*)?\)", "1=1", args.sql, re.I) assert sql and sql != args.sql db.execute( """SELECT ST_Srid("1") AS srid FROM ({} LIMIT 1) AS t("1")""". format(sql)) srid = db.fetchone()[0] assert srid and int(srid) > 0, "Unable to retrieve geometry SRID." features = args.sql log.log( "RoboSat.pink - rasterize - rasterizing {} from {} on cover {}".format( args.type, features, args.cover)) with open(os.path.join(os.path.expanduser(args.out), "instances_" + args.type.lower() + ".cover"), mode="w") as cover: for tile in tqdm(list(tiles_from_csv(os.path.expanduser(args.cover))), ascii=True, unit="tile"): geojson = None if args.pg: w, s, e, n = tile_bbox(tile) tile_geom = "ST_Transform(ST_MakeEnvelope({},{},{},{}, 4326), {})".format( w, s, e, n, srid) query = """ WITH sql AS ({}), geom AS (SELECT "1" AS geom FROM sql AS t("1")), json AS (SELECT '{{"type": "Feature", "geometry": ' || ST_AsGeoJSON((ST_Dump(ST_Transform(ST_Force2D(geom.geom), 4326))).geom, 6) || '}}' AS features FROM geom) SELECT '{{"type": "FeatureCollection", "features": [' || Array_To_String(array_agg(features), ',') || ']}}' FROM json """.format(args.sql.replace("TILE_GEOM", tile_geom)) db.execute(query) row = db.fetchone() try: geojson = json.loads( row[0])["features"] if row and row[0] else None except Exception: log.log("Warning: Invalid geometries, skipping {}".format( tile)) conn = psycopg2.connect(args.pg) db = conn.cursor() if args.geojson: geojson = feature_map[tile] if tile in feature_map else None if geojson: num = len(geojson) out = geojson_tile_burn(tile, geojson, 4326, list(map(int, args.ts.split(","))), burn_value) if not geojson or out is None: num = 0 out = np.zeros(shape=list(map(int, args.ts.split(","))), dtype=np.uint8) tile_label_to_file(args.out, tile, palette, out, append=args.append) cover.write("{},{},{} {}{}".format(tile.x, tile.y, tile.z, num, os.linesep)) if not args.no_web_ui: template = "leaflet.html" if not args.web_ui_template else args.web_ui_template base_url = args.web_ui_base_url if args.web_ui_base_url else "." tiles = [tile for tile in tiles_from_csv(args.cover)] web_ui(args.out, base_url, tiles, tiles, "png", template)
def main(args): config = load_config(args.config) args.out = os.path.expanduser(args.out) args.workers = torch.cuda.device_count() * 2 if torch.device("cuda") and not args.workers else args.workers config["model"]["loader"] = args.loader if args.loader else config["model"]["loader"] config["model"]["bs"] = args.bs if args.bs else config["model"]["bs"] config["model"]["lr"] = args.lr if args.lr else config["model"]["lr"] config["model"]["ts"] = args.ts if args.ts else config["model"]["ts"] config["model"]["nn"] = args.nn if args.nn else config["model"]["nn"] config["model"]["loss"] = args.loss if args.loss else config["model"]["loss"] config["model"]["da"] = args.da if args.da else config["model"]["da"] config["model"]["dap"] = args.dap if args.dap else config["model"]["dap"] check_classes(config) check_channels(config) check_model(config) if not os.path.isdir(os.path.expanduser(args.dataset)): sys.exit("ERROR: dataset {} is not a directory".format(args.dataset)) log = Logs(os.path.join(args.out, "log")) if torch.cuda.is_available(): log.log("RoboSat.pink - training on {} GPUs, with {} workers".format(torch.cuda.device_count(), args.workers)) log.log("(Torch:{} Cuda:{} CudNN:{})".format(torch.__version__, torch.version.cuda, torch.backends.cudnn.version())) device = torch.device("cuda") torch.backends.cudnn.benchmark = True else: log.log("RoboSat.pink - training on CPU, with {} workers - (Torch:{})".format(args.workers, torch.__version__)) log.log("WARNING: Are you really sure sure about not training on GPU ?") device = torch.device("cpu") loader = load_module("robosat_pink.loaders.{}".format(config["model"]["loader"].lower())) loader_train = getattr(loader, config["model"]["loader"])( config, config["model"]["ts"], os.path.join(args.dataset, "training"), "train" ) loader_val = getattr(loader, config["model"]["loader"])( config, config["model"]["ts"], os.path.join(args.dataset, "validation"), "train" ) model_module = load_module("robosat_pink.models.{}".format(config["model"]["nn"].lower())) nn = getattr(model_module, config["model"]["nn"])(loader_train.shape_in, loader_train.shape_out, config).to(device) nn = torch.nn.DataParallel(nn) optimizer = Adam(nn.parameters(), lr=config["model"]["lr"]) resume = 0 if args.checkpoint: chkpt = torch.load(os.path.expanduser(args.checkpoint), map_location=device) nn.load_state_dict(chkpt["state_dict"]) log.log("Using checkpoint: {}".format(args.checkpoint)) if args.resume: optimizer.load_state_dict(chkpt["optimizer"]) resume = chkpt["epoch"] if resume >= args.epochs: sys.exit("ERROR: Epoch {} already reached by the given checkpoint".format(config["model"]["epochs"])) loss_module = load_module("robosat_pink.losses.{}".format(config["model"]["loss"].lower())) criterion = getattr(loss_module, config["model"]["loss"])().to(device) bs = config["model"]["bs"] train_loader = DataLoader(loader_train, batch_size=bs, shuffle=True, drop_last=True, num_workers=args.workers) val_loader = DataLoader(loader_val, batch_size=bs, shuffle=False, drop_last=True, num_workers=args.workers) log.log("--- Input tensor from Dataset: {} ---".format(args.dataset)) num_channel = 1 # 1-based numerotation for channel in config["channels"]: for band in channel["bands"]: log.log("Channel {}:\t\t {}[band: {}]".format(num_channel, channel["name"], band)) num_channel += 1 log.log("--- Hyper Parameters ---") for hp in config["model"]: log.log("{}{}".format(hp.ljust(25, " "), config["model"][hp])) for epoch in range(resume, args.epochs): UUID = uuid.uuid1() log.log("---{}Epoch: {}/{} -- UUID: {}".format(os.linesep, epoch + 1, args.epochs, UUID)) process(train_loader, config, log, device, nn, criterion, "train", optimizer) if not args.no_validation: process(val_loader, config, log, device, nn, criterion, "eval") try: # https://github.com/pytorch/pytorch/issues/9176 nn_doc = nn.module.doc nn_version = nn.module.version except AttributeError: nn_version = nn.version nn_doc == nn.doc states = { "uuid": UUID, "model_version": nn_version, "producer_name": "RoboSat.pink", "producer_version": "0.4.0", "model_licence": "MIT", "domain": "pink.RoboSat", # reverse-DNS "doc_string": nn_doc, "shape_in": loader_train.shape_in, "shape_out": loader_train.shape_out, "state_dict": nn.state_dict(), "epoch": epoch + 1, "nn": config["model"]["nn"], "optimizer": optimizer.state_dict(), "loader": config["model"]["loader"], } checkpoint_path = os.path.join(args.out, "checkpoint-{:05d}.pth".format(epoch + 1)) torch.save(states, checkpoint_path)
def main(args): if args.pg: if not args.sql: sys.exit("ERROR: With PostgreSQL db, --sql must be provided") if (args.sql and args.geojson) or (args.sql and not args.pg): sys.exit( "ERROR: You can use either --pg or --geojson inputs, but only one at once." ) config = load_config(args.config) check_classes(config) palette = make_palette(*[classe["color"] for classe in config["classes"]], complementary=True) burn_value = next(config["classes"].index(classe) for classe in config["classes"] if classe["title"] == args.type) if "burn_value" not in locals(): sys.exit( "ERROR: asked type to rasterize is not contains in your config file classes." ) args.out = os.path.expanduser(args.out) os.makedirs(args.out, exist_ok=True) log = Logs(os.path.join(args.out, "log"), out=sys.stderr) def geojson_parse_polygon(zoom, srid, feature_map, polygon, i): try: if srid != 4326: polygon = [ xy for xy in geojson_reproject( { "type": "feature", "geometry": polygon }, srid, 4326) ][0] for i, ring in enumerate( polygon["coordinates"] ): # GeoJSON coordinates could be N dimensionals polygon["coordinates"][i] = [[ x, y ] for point in ring for x, y in zip([point[0]], [point[1]])] if polygon["coordinates"]: for tile in burntiles.burn([{ "type": "feature", "geometry": polygon }], zoom=zoom): feature_map[mercantile.Tile(*tile)].append({ "type": "feature", "geometry": polygon }) except ValueError: log.log("Warning: invalid feature {}, skipping".format(i)) return feature_map def geojson_parse_geometry(zoom, srid, feature_map, geometry, i): if geometry["type"] == "Polygon": feature_map = geojson_parse_polygon(zoom, srid, feature_map, geometry, i) elif geometry["type"] == "MultiPolygon": for polygon in geometry["coordinates"]: feature_map = geojson_parse_polygon(zoom, srid, feature_map, { "type": "Polygon", "coordinates": polygon }, i) else: log.log( "Notice: {} is a non surfacic geometry type, skipping feature {}" .format(geometry["type"], i)) return feature_map if args.geojson: tiles = [ tile for tile in tiles_from_csv(os.path.expanduser(args.cover)) ] assert tiles, "Empty cover" zoom = tiles[0].z assert not [tile for tile in tiles if tile.z != zoom ], "Unsupported zoom mixed cover. Use PostGIS instead" feature_map = collections.defaultdict(list) log.log("RoboSat.pink - rasterize - Compute spatial index") for geojson_file in args.geojson: with open(os.path.expanduser(geojson_file)) as geojson: feature_collection = json.load(geojson) try: crs_mapping = {"CRS84": "4326", "900913": "3857"} srid = feature_collection["crs"]["properties"][ "name"].split(":")[-1] srid = int(srid) if srid not in crs_mapping else int( crs_mapping[srid]) except: srid = int(4326) for i, feature in enumerate( tqdm(feature_collection["features"], ascii=True, unit="feature")): if feature["geometry"]["type"] == "GeometryCollection": for geometry in feature["geometry"]["geometries"]: feature_map = geojson_parse_geometry( zoom, srid, feature_map, geometry, i) else: feature_map = geojson_parse_geometry( zoom, srid, feature_map, feature["geometry"], i) features = args.geojson if args.pg: conn = psycopg2.connect(args.pg) db = conn.cursor() assert "limit" not in args.sql.lower(), "LIMIT is not supported" db.execute( "SELECT ST_Srid(geom) AS srid FROM ({} LIMIT 1) AS sub".format( args.sql)) srid = db.fetchone()[0] assert srid, "Unable to retrieve geometry SRID." if "where" not in args.sql.lower( ): # TODO: Find a more reliable way to handle feature filtering args.sql += " WHERE ST_Intersects(tile.geom, geom)" else: args.sql += " AND ST_Intersects(tile.geom, geom)" features = args.sql log.log( "RoboSat.pink - rasterize - rasterizing {} from {} on cover {}".format( args.type, features, args.cover)) with open(os.path.join(os.path.expanduser(args.out), "instances.cover"), mode="w") as cover: for tile in tqdm(list(tiles_from_csv(os.path.expanduser(args.cover))), ascii=True, unit="tile"): geojson = None if args.pg: w, s, e, n = tile_bbox(tile) query = """ WITH tile AS (SELECT ST_Transform(ST_MakeEnvelope({},{},{},{}, 4326), {}) AS geom), geom AS (SELECT ST_Intersection(tile.geom, sql.geom) AS geom FROM tile CROSS JOIN LATERAL ({}) sql), json AS (SELECT '{{"type": "Feature", "geometry": ' || ST_AsGeoJSON((ST_Dump(ST_Transform(ST_Force2D(geom.geom), 4326))).geom, 6) || '}}' AS features FROM geom) SELECT '{{"type": "FeatureCollection", "features": [' || Array_To_String(array_agg(features), ',') || ']}}' FROM json """.format(w, s, e, n, srid, args.sql) db.execute(query) row = db.fetchone() try: geojson = json.loads( row[0])["features"] if row and row[0] else None except Exception: log.log("Warning: Invalid geometries, skipping {}".format( tile)) conn = psycopg2.connect(args.pg) db = conn.cursor() if args.geojson: geojson = feature_map[tile] if tile in feature_map else None if geojson: num = len(geojson) out = geojson_tile_burn(tile, geojson, 4326, args.ts, burn_value) if not geojson or out is None: num = 0 out = np.zeros(shape=(args.ts, args.ts), dtype=np.uint8) tile_label_to_file(args.out, tile, palette, out) cover.write("{},{},{} {}{}".format(tile.x, tile.y, tile.z, num, os.linesep)) if not args.no_web_ui: template = "leaflet.html" if not args.web_ui_template else args.web_ui_template base_url = args.web_ui_base_url if args.web_ui_base_url else "./" tiles = [tile for tile in tiles_from_csv(args.cover)] web_ui(args.out, base_url, tiles, tiles, "png", template)
def main(args): config = load_config(args.config) check_channels(config) check_classes(config) palette = make_palette([classe["color"] for classe in config["classes"]]) if not args.bs: try: args.bs = config["model"]["bs"] except: pass assert args.bs, "For rsp predict, model/bs must be set either in config file, or pass trought parameter --bs" args.workers = args.bs if not args.workers else args.workers cover = [tile for tile in tiles_from_csv(os.path.expanduser(args.cover)) ] if args.cover else None log = Logs(os.path.join(args.out, "log")) if torch.cuda.is_available(): log.log("RoboSat.pink - predict on {} GPUs, with {} workers".format( torch.cuda.device_count(), args.workers)) log.log("(Torch:{} Cuda:{} CudNN:{})".format( torch.__version__, torch.version.cuda, torch.backends.cudnn.version())) device = torch.device("cuda") torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True else: log.log("RoboSat.pink - predict on CPU, with {} workers".format( args.workers)) log.log("") log.log("============================================================") log.log("WARNING: Are you -really- sure about not predicting on GPU ?") log.log("============================================================") log.log("") device = torch.device("cpu") chkpt = torch.load(args.checkpoint, map_location=device) nn_module = load_module("robosat_pink.nn.{}".format(chkpt["nn"].lower())) nn = getattr(nn_module, chkpt["nn"])(chkpt["shape_in"], chkpt["shape_out"], chkpt["encoder"].lower()).to(device) nn = torch.nn.DataParallel(nn) nn.load_state_dict(chkpt["state_dict"]) nn.eval() log.log("Model {} - UUID: {}".format(chkpt["nn"], chkpt["uuid"])) with torch.no_grad( ): # don't track tensors with autograd during prediction tiled = [] if args.passes in ["first", "both"]: log.log("== Predict First Pass ==") tiled = predict(config, cover, args, palette, chkpt, nn, device, "predict") if args.passes in ["second", "both"]: log.log("== Predict Second Pass ==") predict(config, cover, args, palette, chkpt, nn, device, "predict_translate") if not args.no_web_ui and tiled: template = "leaflet.html" if not args.web_ui_template else args.web_ui_template base_url = args.web_ui_base_url if args.web_ui_base_url else "." web_ui(args.out, base_url, tiled, tiled, "png", template)
def main(args): if (args.geojson and args.postgis) or (not args.geojson and not args.postgis): sys.exit( "ERROR: Input features to rasterize must be either GeoJSON or PostGIS" ) if args.postgis and not args.pg_dsn: sys.exit( "ERROR: With PostGIS input features, --pg_dsn must be provided") config = load_config(args.config) check_classes(config) palette = make_palette(*[classe["color"] for classe in config["classes"]], complementary=True) burn_value = next(config["classes"].index(classe) for classe in config["classes"] if classe["title"] == args.type) if "burn_value" not in locals(): sys.exit( "ERROR: asked type to rasterize is not contains in your config file classes." ) args.out = os.path.expanduser(args.out) os.makedirs(args.out, exist_ok=True) log = Logs(os.path.join(args.out, "log"), out=sys.stderr) def geojson_parse_polygon(zoom, srid, feature_map, polygon, i): try: if srid != 4326: polygon = [ xy for xy in geojson_reproject( { "type": "feature", "geometry": polygon }, srid, 4326) ][0] for i, ring in enumerate( polygon["coordinates"] ): # GeoJSON coordinates could be N dimensionals polygon["coordinates"][i] = [[ x, y ] for point in ring for x, y in zip([point[0]], [point[1]])] if polygon["coordinates"]: for tile in burntiles.burn([{ "type": "feature", "geometry": polygon }], zoom=zoom): feature_map[mercantile.Tile(*tile)].append({ "type": "feature", "geometry": polygon }) except ValueError: log.log("Warning: invalid feature {}, skipping".format(i)) return feature_map def geojson_parse_geometry(zoom, srid, feature_map, geometry, i): if geometry["type"] == "Polygon": feature_map = geojson_parse_polygon(zoom, srid, feature_map, geometry, i) elif geometry["type"] == "MultiPolygon": for polygon in geometry["coordinates"]: feature_map = geojson_parse_polygon(zoom, srid, feature_map, { "type": "Polygon", "coordinates": polygon }, i) else: log.log( "Notice: {} is a non surfacic geometry type, skipping feature {}" .format(geometry["type"], i)) return feature_map if args.geojson: try: tiles = [ tile for tile in tiles_from_csv(os.path.expanduser(args.cover)) ] zoom = tiles[0].z assert not [tile for tile in tiles if tile.z != zoom] except: sys.exit("ERROR: Inconsistent cover {}".format(args.cover)) feature_map = collections.defaultdict(list) log.log("RoboSat.pink - rasterize - Compute spatial index") for geojson_file in args.geojson: with open(os.path.expanduser(geojson_file)) as geojson: feature_collection = json.load(geojson) try: crs_mapping = {"CRS84": "4326", "900913": "3857"} srid = feature_collection["crs"]["properties"][ "name"].split(":")[-1] srid = int(srid) if srid not in crs_mapping else int( crs_mapping[srid]) except: srid = int(4326) for i, feature in enumerate( tqdm(feature_collection["features"], ascii=True, unit="feature")): if feature["geometry"]["type"] == "GeometryCollection": for geometry in feature["geometry"]["geometries"]: feature_map = geojson_parse_geometry( zoom, srid, feature_map, geometry, i) else: feature_map = geojson_parse_geometry( zoom, srid, feature_map, feature["geometry"], i) features = args.geojson if args.postgis: pg_conn = psycopg2.connect(args.pg_dsn) pg = pg_conn.cursor() pg.execute( "SELECT ST_Srid(geom) AS srid FROM ({} LIMIT 1) AS sub".format( args.postgis)) try: srid = pg.fetchone()[0] except Exception: sys.exit("Unable to retrieve geometry SRID.") features = args.postgis log.log( "RoboSat.pink - rasterize - rasterizing {} from {} on cover {}".format( args.type, features, args.cover)) with open(os.path.join(os.path.expanduser(args.out), "instances.cover"), mode="w") as cover: for tile in tqdm(list(tiles_from_csv(os.path.expanduser(args.cover))), ascii=True, unit="tile"): if args.postgis: s, w, e, n = mercantile.bounds(tile) query = """ WITH a AS ({}), b AS (SELECT ST_Transform(ST_MakeEnvelope({},{},{},{}, 4326), {}) AS geom) SELECT '{{ "type": "FeatureCollection", "features": [{{"type": "Feature", "geometry": ' || ST_AsGeoJSON(ST_Transform(ST_Intersection(a.geom, b.geom), 4326), 6) || '}}]}}' FROM a, b WHERE ST_Intersects(a.geom, b.geom) """.format(args.postgis, s, w, e, n, srid) try: pg.execute(query) row = pg.fetchone() geojson = json.loads(row[0])["features"] if row else None except Exception: log.log("Warning: Invalid geometries, skipping {}".format( tile)) pg_conn = psycopg2.connect(args.pg_dsn) pg = pg_conn.cursor() if args.geojson: geojson = feature_map[tile] if tile in feature_map else None if geojson: num = len(geojson) out = geojson_tile_burn(tile, geojson, 4326, args.ts, burn_value) if not geojson or out is None: num = 0 out = np.zeros(shape=(args.ts, args.ts), dtype=np.uint8) tile_label_to_file(args.out, tile, palette, out) cover.write("{},{},{} {}{}".format(tile.x, tile.y, tile.z, num, os.linesep)) if not args.no_web_ui: template = "leaflet.html" if not args.web_ui_template else args.web_ui_template base_url = args.web_ui_base_url if args.web_ui_base_url else "./" tiles = [tile for tile in tiles_from_csv(args.cover)] web_ui(args.out, base_url, tiles, tiles, "png", template)