Beispiel #1
0
    def prepare_dataset(
        self,
        dataset: Dataset,
        columns: List[str],
        batch_size: int = 32,
        *args,
        **kwargs,
    ) -> None:
        """Preparation that is applied before the CachedOperation.

        Many CachedOperations require a full pass over the dataset to precompute some
        variables before the core operation can actually be applied e.g. to create a
        Bag-of-Words representation, constructing a dataset vocabulary to keep only
        tokens that are frequently seen across the dataset.

        Args:
            dataset: Dataset
            columns: list of columns
            batch_size: batch size for .map(..)

        Returns: updated Dataset
        """

        # Set the data format
        dataset.set_format(columns)

        # Batch the dataset, and prepare each batch
        for batch in dataset.batch(batch_size):
            try:
                # Check if the `prepare_batch` function has been implemented
                self.prepare_batch(
                    batch=batch,
                    columns=columns,
                    *args,
                    **kwargs,
                )
            except NotImplementedError:
                break

        # Reset the data format
        dataset.reset_format()
Beispiel #2
0
    def evaluate(
        self,
        dataset: Dataset,
        input_columns: List[str],
        output_columns: List[str],
        batch_size: int = 32,
        metrics: List[str] = None,
        coerce_fn: Callable = None,
    ):

        # TODO(karan): generalize to TF2

        # Reset the dataset format
        dataset.reset_format()
        dataset.set_format(columns=input_columns + output_columns)

        # TODO(karan): check that the Dataset conforms to the task definition
        # TODO(karan): figure out how the output_columns will be used by the metrics
        pass

        predictions = []
        targets = []

        # Loop and apply the prediction function
        # TODO(karan): not using .map() here in order to get more fine-grained
        #  control over devices
        for idx in range(0, len(dataset), batch_size):
            # Create the batch
            batch = dataset[idx:idx + batch_size]

            # Predict on the batch
            prediction_dict = self.predict_batch(batch=batch,
                                                 input_columns=input_columns)

            # Coerce the predictions
            if coerce_fn:
                prediction_dict = coerce_fn(prediction_dict)

            # Grab the raw target key/values
            target_dict = tz.keyfilter(lambda k: k in output_columns, batch)

            # TODO(karan): general version for non-classification problems
            # TODO(karan): move this to the right device
            if self.task.classification():
                target_dict = tz.valmap(lambda v: torch.tensor(v), target_dict)

            # TODO(karan): incremental metric computation here
            # Append the predictions and targets
            predictions.append(prediction_dict)
            targets.append(target_dict)

        # Consolidate the predictions and targets
        if self.task.classification():
            # TODO(karan): Need to store predictions and outputs from the model
            predictions = tz.merge_with(lambda v: torch.cat(v).to("cpu"),
                                        *predictions)
            targets = tz.merge_with(lambda v: torch.cat(v).to("cpu"), *targets)
        else:
            predictions = tz.merge_with(
                lambda x: list(itertools.chain.from_iterable(x)), *predictions)
            targets = tz.merge_with(
                lambda x: list(itertools.chain.from_iterable(x)), *targets)

        # Compute the metrics
        # TODO(karan): generalize this code to support metric computation for any task

        # Assumes classification, so the output_columns contains a single key for the
        # label
        if self.task.classification():
            assert len(
                output_columns) == 1  # , "Only supports classification."
            num_classes = self.task.output_schema.features[list(
                self.task.output_schema.keys())[0]].num_classes

        labels = targets[list(targets.keys())[0]]

        if metrics is None:
            if self.task is None:
                raise ValueError(
                    "Must specify metrics if model not associated with task")
            metrics = self.task.metrics

        pred = predictions["pred"].to(self.device)
        target = labels.to(self.device)

        evaluation_dict = {
            metric: compute_metric(metric, pred, target, num_classes)
            for metric in metrics
        }

        # Reset the data format
        dataset.reset_format()

        return evaluation_dict