Beispiel #1
0
    def test_der(self):
        T = 1
        M = 1
        b = 1
        t0 = 0
        x0 = 0
        ocp = Ocp(t0=t0, T=T)

        x = ocp.state()
        u = ocp.control()

        ocp.set_der(x, u)

        y = 2 * x

        ocp.subject_to(ocp.der(y) <= 2 * b)
        ocp.subject_to(-2 * b <= ocp.der(y))

        ocp.add_objective(ocp.at_tf(x))
        ocp.subject_to(ocp.at_t0(x) == x0)

        ocp.solver('ipopt')

        ocp.method(MultipleShooting(N=4, M=M, intg='rk'))

        sol = ocp.solve()

        ts, xs = sol.sample(x, grid='control')

        self.assertAlmostEqual(xs[0], x0, places=6)
        self.assertAlmostEqual(xs[-1], x0 - b * T, places=6)
        self.assertAlmostEqual(ts[0], t0)
        self.assertAlmostEqual(ts[-1], t0 + T)
Beispiel #2
0
    def test_param(self):
        ocp = Ocp(T=1)

        x = ocp.state()
        u = ocp.control()

        p = ocp.parameter()

        ocp.set_der(x, u)

        ocp.subject_to(u <= 1)
        ocp.subject_to(-1 <= u)

        ocp.add_objective(ocp.at_tf(x))
        ocp.subject_to(ocp.at_t0(x) == p)

        ocp.solver('ipopt')

        ocp.method(MultipleShooting())

        ocp.set_value(p, 0)
        sol = ocp.solve()

        ts, xs = sol.sample(x, grid='control')
        self.assertAlmostEqual(xs[0], 0)

        ocp.set_value(p, 1)
        sol = ocp.solve()

        ts, xs = sol.sample(x, grid='control')
        self.assertAlmostEqual(xs[0], 1)
Beispiel #3
0
def integrator_control_problem(T=1, u_max=1, x0=0, stage_method=None, t0=0):
    if stage_method is None:
      stage_method = MultipleShooting()
    ocp = Ocp(t0=t0, T=T)

    x = ocp.state()
    u = ocp.control()

    ocp.set_der(x, u)

    ocp.subject_to(u <= u_max)
    ocp.subject_to(-u_max <= u)

    ocp.add_objective(ocp.at_tf(x))
    if x0 is not None:
        ocp.subject_to(ocp.at_t0(x) == x0)

    ocp.solver('ipopt')

    ocp.method(stage_method)

    return (ocp, x, u)
Beispiel #4
0
    def test_basic_t0_free(self):
        xf = 2
        t0 = 0
        for T in [2]:
            for x0 in [0, 1]:
                for b in [1, 2]:
                    for method in [
                            MultipleShooting(N=4, intg='rk'),
                            MultipleShooting(N=4, intg='cvodes'),
                            MultipleShooting(N=4, intg='idas'),
                            DirectCollocation(N=4)
                    ]:
                        ocp = Ocp(t0=FreeTime(2), T=T)

                        x = ocp.state()
                        u = ocp.control()

                        ocp.set_der(x, u)
                        ocp.subject_to(u <= b)
                        ocp.subject_to(-b <= u)

                        ocp.add_objective(ocp.tf)
                        ocp.subject_to(ocp.at_t0(x) == x0)
                        ocp.subject_to(ocp.at_tf(x) == xf)
                        ocp.subject_to(ocp.t0 >= 0)

                        ocp.solver('ipopt')

                        ocp.method(method)

                        sol = ocp.solve()

                        ts, xs = sol.sample(x, grid='control')

                        self.assertAlmostEqual(xs[0], x0, places=6)
                        self.assertAlmostEqual(xs[-1], xf, places=6)
                        self.assertAlmostEqual(ts[0], t0)
                        self.assertAlmostEqual(ts[-1], t0 + T)
Beispiel #5
0
def bang_bang_problem(stage_method):
    ocp = Ocp(T=FreeTime(1))

    p = ocp.state()
    v = ocp.state()
    u = ocp.control()

    ocp.set_der(p, v)
    ocp.set_der(v, u)

    ocp.subject_to(u <= 1)
    ocp.subject_to(-1 <= u)

    ocp.add_objective(ocp.T)
    ocp.subject_to(ocp.at_t0(p) == 0)
    ocp.subject_to(ocp.at_t0(v) == 0)
    ocp.subject_to(ocp.at_tf(p) == 1)
    ocp.subject_to(ocp.at_tf(v) == 0)

    ocp.solver('ipopt')

    ocp.method(stage_method)

    return (ocp, ocp.solve(), p, v, u)
Beispiel #6
0
    def test_dae_casadi(self):
        # cross check with dae_colloation

        xref = 0.1  # chariot reference

        l = 1.  #- -> crane, + -> pendulum
        m = 1.
        M = 1.
        g = 9.81

        ocp = Ocp(T=5)

        x = ocp.state()
        y = ocp.state()
        w = ocp.state()
        dx = ocp.state()
        dy = ocp.state()
        dw = ocp.state()

        xa = ocp.algebraic()
        u = ocp.control()

        ocp.set_der(x, dx)
        ocp.set_der(y, dy)
        ocp.set_der(w, dw)
        ddx = (w - x) * xa / m
        ddy = g - y * xa / m
        ddw = ((x - w) * xa - u) / M
        ocp.set_der(dx, ddx)
        ocp.set_der(dy, ddy)
        ocp.set_der(dw, ddw)
        ocp.add_alg((x - w) * (ddx - ddw) + y * ddy + dy * dy + (dx - dw)**2)

        ocp.add_objective(
            ocp.at_tf((x - xref) * (x - xref) + (w - xref) * (w - xref) +
                      dx * dx + dy * dy))
        ocp.add_objective(
            ocp.integral((x - xref) * (x - xref) + (w - xref) * (w - xref)))

        ocp.subject_to(-2 <= (u <= 2))

        ocp.subject_to(ocp.at_t0(x) == 0)
        ocp.subject_to(ocp.at_t0(y) == l)
        ocp.subject_to(ocp.at_t0(w) == 0)
        ocp.subject_to(ocp.at_t0(dx) == 0)
        ocp.subject_to(ocp.at_t0(dy) == 0)
        ocp.subject_to(ocp.at_t0(dw) == 0)
        #ocp.subject_to(xa>=0,grid='integrator_roots')

        ocp.set_initial(y, l)
        ocp.set_initial(xa, 9.81)

        # Pick an NLP solver backend
        # NOTE: default scaling strategy of MUMPS leads to a singular matrix error
        ocp.solver(
            'ipopt', {
                "ipopt.linear_solver": "mumps",
                "ipopt.mumps_scaling": 0,
                "ipopt.tol": 1e-12
            })

        # Pick a solution method
        method = DirectCollocation(N=50)
        ocp.method(method)

        # Solve
        sol = ocp.solve()

        assert_array_almost_equal(
            sol.sample(xa, grid='integrator', refine=1)[1][0],
            9.81011622448889)
        assert_array_almost_equal(
            sol.sample(xa, grid='integrator', refine=1)[1][1],
            9.865726317147214)
        assert_array_almost_equal(
            sol.sample(xa, grid='integrator')[1][0], 9.81011622448889)
        assert_array_almost_equal(
            sol.sample(xa, grid='integrator')[1][1], 9.865726317147214)
        assert_array_almost_equal(
            sol.sample(xa, grid='control')[1][0], 9.81011622448889)
        assert_array_almost_equal(
            sol.sample(xa, grid='control')[1][1], 9.865726317147214)
Beispiel #7
0
shifted_midpoints_y = np.linspace(0, global_end_goal_y, NB)
shifted_radii = np.ones(NB)

tlength1 = len(shifted_midpoints_x)
tunnel_s1 = np.linspace(0, 1, tlength1)

bx = ocp.parameter(NB)
by = ocp.parameter(NB)
br = ocp.parameter(NB)

ocp.set_value(bx, shifted_midpoints_x)
ocp.set_value(by, shifted_midpoints_y)
ocp.set_value(br, shifted_radii)

ocp.subject_to(
    ocp.at_tf(s_obs) <= 1
)  # effect unclear === the path given is long = first ocp iteration will not get there if dt is small

obs_spline_x = interpolant('x', 'bspline', [tunnel_s1], 1, {
    "algorithm": "smooth_linear",
    "smooth_linear_frac": 0.49
})
obs_spline_y = interpolant('y', 'bspline', [tunnel_s1], 1, {
    "algorithm": "smooth_linear",
    "smooth_linear_frac": 0.49
})
obs_spline_r = interpolant('r', 'bspline', [tunnel_s1], 1, {
    "algorithm": "smooth_linear",
    "smooth_linear_frac": 0.49
})
Beispiel #8
0
ocp.subject_to(0 <= (v <= 1))
ocp.subject_to(-pi <= (w <= pi))

#-------- initial guesss

# ocp.set_initial(x, np.zeros(N+1))
# ocp.set_initial(y, np.zeros(N+1))
# ocp.set_initial(theta, np.zeros(N+1))

# ocp.set_initial(v , np.zeros(N+1))
# ocp.set_initial(w , np.zeros(N+1))

#----------- end point constraint

ocp.subject_to(ocp.at_tf(x) == 1)

# -------------------------------------- Objective function

ocp.add_objective(
    1 * ocp.integral((x)**2 +
                     (y)**2))  # integral = cause of extra state in acados

# ----------------- Solver

options = {"ipopt": {"print_level": 5}}
options["expand"] = False
options["print_time"] = True
ocp.solver('ipopt', options)

method = external_method('acados',
Beispiel #9
0
tlength1        =  len(shifted_midpoints_x[0:N])
tunnel_s1       =  np.linspace(0,1,tlength1) 

bx       =  ocp.parameter(N)
by       =  ocp.parameter(N)
br       =  ocp.parameter(N)


ocp.set_value(bx, shifted_midpoints_x[0:N])
ocp.set_value(by, shifted_midpoints_y[0:N])
# ocp.set_value(br, shifted_radii[0:N])

ocp.set_value(br, 100*np.ones(N))

ocp.subject_to(ocp.at_tf(s_obs) <= 1)    # effect unclear === the path given is long = first ocp iteration will not get there if dt is small

obs_spline_x = interpolant('x','bspline',[tunnel_s1], 1  , {"algorithm": "smooth_linear","smooth_linear_frac":0.49})
obs_spline_y = interpolant('y','bspline',[tunnel_s1], 1  , {"algorithm": "smooth_linear","smooth_linear_frac":0.49})
obs_spline_r = interpolant('r','bspline',[tunnel_s1], 1  , {"algorithm": "smooth_linear","smooth_linear_frac":0.49})


ocp.subject_to(  x  > 0 )

ocp.subject_to(   ( x - obs_spline_x(s_obs,bx) )**2 + ( y - obs_spline_y(s_obs,by) )**2  - (obs_spline_r(s_obs,br))**2 < 0)

# -------------------------------------- Objective function 

ocp.add_objective( 1*ocp.integral((x - end_goal_x)**2 + (y-end_goal_y)**2))  # integral = cause of extra state in acados

Beispiel #10
0
#--------------- Bubbles with s 


bubbles_x       =  ocp.parameter(N+1)
bubbles_y       =  ocp.parameter(N+1)
bubbles_radii   =  ocp.parameter(N+1)

ocp.set_value(bubbles_x, shifted_midpoints_x)
ocp.set_value(bubbles_y, shifted_midpoints_y)
ocp.set_value(bubbles_radii,   shifted_radii)

tlength1        =  len(shifted_midpoints_x)
tunnel_s1       =  np.linspace(0,1,tlength1) 

ocp.subject_to(ocp.at_tf(s_obs) <= 1)   

obs_spline_x = interpolant('x','bspline',[tunnel_s1], 1  , {"algorithm": "smooth_linear","smooth_linear_frac":0.49})
obs_spline_y = interpolant('y','bspline',[tunnel_s1], 1  , {"algorithm": "smooth_linear","smooth_linear_frac":0.49})
obs_spline_r = interpolant('r','bspline',[tunnel_s1], 1  , {"algorithm": "smooth_linear","smooth_linear_frac":0.49})


ocp.subject_to( ( ( ( x - obs_spline_x(s_obs,bubbles_x) )**2 + ( y-obs_spline_y(s_obs,bubbles_y) )**2 ) - (obs_spline_r(s_obs,bubbles_radii)**2 ) ) < 0 )


# -------------------------------------- Objective function 

ocp.add_objective( 1*ocp.integral((x - end_goal_x)**2 + (y-end_goal_y)**2))  # integral = cause of extra state in acados


# ----------------- Solver