def create_dataloader(imdb_name, args):
    imdb, roidb, ratio_list, ratio_index = combined_roidb(imdb_name)
    train_size = len(roidb)

    print('{:d} roidb entries'.format(len(roidb)))

    output_dir = args.save_dir + "/" + args.net + "/" + args.dataset
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    sampler_batch = sampler(train_size, args.batch_size)

    dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \
                             imdb.num_classes, training=True)

    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=args.batch_size,
                                             sampler=sampler_batch,
                                             num_workers=args.num_workers)
    return dataloader, train_size, imdb
Beispiel #2
0
    elif args.dataset == "cityscapes":
        args.imdb_name = "cityscapes_train"
        args.imdbval_name = "foggy_cityscapes_val"
        args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20']

    args.cfg_file = "cfgs/{}_ls.yml".format(args.net) if args.large_scale else "cfgs/{}.yml".format(args.net)
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    print('Using config:')
    pprint.pprint(cfg)

    cfg.TRAIN.USE_FLIPPED = False
    imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdbval_name, False)
    imdb.competition_mode(on=True)

    print('{:d} roidb entries'.format(len(roidb)))

    input_dir = args.load_dir + "/" + args.net + "/" + args.dataset
    if not os.path.exists(input_dir):
        raise Exception('There is no input directory for loading network from ' + input_dir)
    load_name = os.path.join(input_dir,
                         #    'foggy_ImgMultiGRL4_trainval_1_0_90000.pth'.format(args.checksession, args.checkepoch, args.checkpoint))
    			'clipart_DivMatch_trainval_{}_{}.pth'.format(args.checksession, args.checkpoint))

    # initilize the network here.
    if args.net == 'vgg16':
        fasterRCNN = vgg16(imdb.classes, pretrained=False, class_agnostic=args.class_agnostic)
    elif args.net == 'res101':
    cfg_from_list(args.set_cfgs)

  print('Using config:')
  pprint.pprint(cfg)
  np.random.seed(cfg.RNG_SEED)

  #torch.backends.cudnn.benchmark = True
  if torch.cuda.is_available() and not args.cuda:
    print("WARNING: You have a CUDA device, so you should probably run with --cuda")

  # train set
  # -- Note: Use validation set and disable the flipped to enable faster loading.
  cfg.TRAIN.USE_FLIPPED = True
  cfg.USE_GPU_NMS = args.cuda

  s_imdb, s_roidb, s_ratio_list, s_ratio_index = combined_roidb(args.s_imdb_name)
  s_train_size = len(s_roidb)  # add flipped         image_index*2

  t_imdb, t_roidb, t_ratio_list, t_ratio_index = combined_roidb(args.t_imdb_name)
  t_train_size = len(t_roidb)  # add flipped         image_index*2

  print('source {:d} target {:d} roidb entries'.format(len(s_roidb),len(t_roidb)))

  output_dir = args.save_dir + "/" + args.net + "/" + args.dataset
  if not os.path.exists(output_dir):
    os.makedirs(output_dir)

  s_sampler_batch = sampler(s_train_size, args.batch_size)
  t_sampler_batch=sampler(t_train_size,args.batch_size)

  s_dataset = roibatchLoader(s_roidb, s_ratio_list, s_ratio_index, args.batch_size, \
Beispiel #4
0
  if args.set_cfgs is not None:
    cfg_from_list(args.set_cfgs)

  print('Using config:')
  pprint.pprint(cfg)
  np.random.seed(cfg.RNG_SEED)

  #torch.backends.cudnn.benchmark = True
  if torch.cuda.is_available() and not args.cuda:
    print("WARNING: You have a CUDA device, so you should probably run with --cuda")

  # train set
  # -- Note: Use validation set and disable the flipped to enable faster loading.
  cfg.TRAIN.USE_FLIPPED = True
  cfg.USE_GPU_NMS = args.cuda
  imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)
  train_size = len(roidb)

  print('{:d} roidb entries'.format(len(roidb)))

  output_dir = args.save_dir + "/" + args.net + "/" + args.dataset
  if not os.path.exists(output_dir):
    os.makedirs(output_dir)

  sampler_batch = sampler(train_size, args.batch_size)

  dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \
                           imdb.num_classes, training=True)

  dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
                            sampler=sampler_batch, num_workers=args.num_workers)
Beispiel #5
0
  print('Using config:')
  pprint.pprint(cfg)
  np.random.seed(cfg.RNG_SEED)

  #torch.backends.cudnn.benchmark = True
  if torch.cuda.is_available() and not args.cuda:
    print("WARNING: You have a CUDA device, so you should probably run with --cuda")

  # train set
  # -- Note: Use validation set and disable the flipped to enable faster loading.
  cfg.TRAIN.USE_FLIPPED = True
  cfg.USE_GPU_NMS = args.cuda

  # SOURCE
  imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)
  train_size = len(roidb)

  print('{:d} roidb entries'.format(len(roidb)))

  output_dir = args.save_dir + "/" + args.net + "/" + args.dataset
  if not os.path.exists(output_dir):
    os.makedirs(output_dir)

  sampler_batch = sampler(train_size, args.batch_size)

  dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \
                           imdb.num_classes, training=True)

  dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
                                           sampler=sampler_batch, num_workers=args.num_workers)
Beispiel #6
0
    print('Using config:')
    pprint.pprint(cfg)
    np.random.seed(cfg.RNG_SEED)

    #torch.backends.cudnn.benchmark = True
    if torch.cuda.is_available() and not args.cuda:
        print(
            "WARNING: You have a CUDA device, so you should probably run with --cuda"
        )

    # train set
    # -- Note: Use validation set and disable the flipped to enable faster loading.
    cfg.TRAIN.USE_FLIPPED = True
    cfg.USE_GPU_NMS = args.cuda
    imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)
    train_size = len(roidb)

    print('{:d} roidb entries'.format(len(roidb)))

    output_dir = args.save_dir + "/" + args.net + "/" + args.dataset
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    sampler_batch = sampler(train_size, args.batch_size)

    dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, \
                             imdb.num_classes, training=True)

    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=args.batch_size,
Beispiel #7
0
    args.cfg_file = ("cfgs/{}_ls.yml".format(args.net)
                     if args.large_scale else "cfgs/{}.yml".format(args.net))

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    print("Using config:")
    pprint.pprint(cfg)

    cfg.TRAIN.USE_FLIPPED = False

    if args.part == "test_s":
        imdb, roidb, ratio_list, ratio_index = combined_roidb(
            args.s_imdbtest_name, False)
    elif args.part == "test_t":
        imdb, roidb, ratio_list, ratio_index = combined_roidb(
            args.t_imdbtest_name, False)
    elif args.part == "test_all":
        imdb, roidb, ratio_list, ratio_index = combined_roidb(
            args.all_imdbtest_name, False)
    else:
        print("don't have the test part !")
        pdb.set_trace()

    imdb.competition_mode(on=True)

    print("{:d} roidb entries".format(len(roidb)))

    # input_dir = args.load_dir + "/" + args.net + "/" + args.dataset