Beispiel #1
0
def main():
    # 2분법을 이용하여 허용 응력과 안전률을 고려한 최소 직경을 구함
    # 더 적은 초기값
    x_l_init = root_finding.epsilon_global * 2
    # 더 큰 초기값
    x_h_init = 1.0
    # 2분법 호출
    result = root_finding.bisection(problem_to_solve, x_l_init, x_h_init, 1e-9)
    # 결과 표시
    print "result =", result
Beispiel #2
0
def main():
    #
    #
    x_l_init = root_finding.epsilon_global * 2
    #
    x_h_init = 1.0
    #
    result = root_finding.bisection(problem_to_solve, x_l_init, x_h_init, 1e-9)
    #
    print "result =", result
Beispiel #3
0
 def test_bisection(self):
     """
     이분법 함수를 검증하는 method
     여기서의 method는 어떤 class에 속한 함수를 뜻함
     매개변수의 self는 이 class를 붕어빵 틀로 삼아 만들어진 붕어빵인 객체를 의미함
     :return:
    """
     # 1변수 방정시의 해를 이분법으로 찾음
     result = rf.bisection(f, 0.01, 100, epsilon=1e-8)
     #이렇게 찾아진 결과는 f(x) = 0 을 만족해야 함
     # 실수 연산은 미소한 오차가 있을 수 있으므로 유효숫자 6번째 자리 까지 확인함
     self.assertAlmostEqual(0.0, f(result), places=6)
Beispiel #4
0
def main():
    root_finding.epsilon = 1e-9
    r_init = root_finding.epsilon
    delta_r = 1e-6
    result = root_finding.sequential(problem_to_solve, r_init, delta_r)
    print "result =", result
    print "f(result)=", problem_to_solve(result)

    result_bisection = root_finding.bisection(problem_to_solve, result - delta_r, result)
    print "result_bisection =", result_bisection
    print "f(result_bisection) =", problem_to_solve(result_bisection)

    help(root_finding.sequential)
def proj_weightedl1ball(y, weight, radius, lamb, method):
    """
    Projection onto the weigthed l1 norm ball:
        min_{x} ||x-y||_2^2
        s.t.    \sum_i weight_ix_i\leq radius
                x_i >= 0
        where y_i >= 0, i=1,...,n
    Parameters
    ----------
    y: (n, ) numpy array,  all elements positive
       n-dimensional vector to project
    weight: (n, ) numpy array, all elements positive
       n-dimensional weight vector for l1 norm ball
    radius: int, optional, default: 1,
       radius of the weighted L1-ball
    Returns
    -------
    x_opt: (n, ) numpy array,  all elements non-negative
       Euclidean projection of y onto the weighted L1-ball
    """
    assert all(entry >= 0 for entry in y), "y must be positive!"

    if weight.dot(y) <= radius:
        return y, 0

    else:
        # use the projection way
        if method == 'bisection':
            x_opt, lamb = root_finding.bisection(weight, y, radius, lamb)
        elif method == 'sortBased':
            x_opt, lamb = root_finding.sortBased(weight, y, radius)
        elif method == 'projection':

            act_ind = range(len(y))
            while True:
                # calculate y_bar_act
                y_act = y[act_ind]
                weights_act = weight[act_ind]

                x_sol_hyper, lamb = proj_hyperplane(y_act, weights_act, radius)
                y_act = np.maximum(x_sol_hyper, 0.0)
                y[act_ind] = y_act

                # update the active set
                act_ind = y > 0

                if sum(x_sol_hyper < 0) == 0:
                    x_opt = y * np.sign(y)
                    break

    return x_opt, lamb
Beispiel #6
0
def main():
    root_finding.epsilon = 1e-9
    r_init = root_finding.epsilon
    delta_r = 1e-6
    result = root_finding.sequential(problem_to_solve, r_init, delta_r)
    print "result =", result
    print "f(result)=", problem_to_solve(result)

    result_bisection = root_finding.bisection(problem_to_solve,
                                              result - delta_r, result)
    print "result_bisection =", result_bisection
    print "f(result_bisection) =", problem_to_solve(result_bisection)

    help(root_finding.sequential)
Beispiel #7
0
def main():
    # 객체를 만듦
    experiment = Experiment()

    # 객체의 변수 force_N 을 지정하기 위해 사용자 입력을 받아 들임
    # force_N 에는 문자열? 실수 중 어떤 것이 저장될 것인가?
    experiment.force_N = float(raw_input("Enter force (N):"))
    # 예를 들어 허용 최대 응력이나 안전률을 변경하는 것도 객체를 수정 하는 대신 main() 함수 값을 바꾸면 됨

    # 2분법을 이용하여 허용 응력과 안전률을 고려한 최소 직경을 구함
    # 더 적은 초기값
    x_l_init = root_finding.epsilon_global * 2
    # 더 큰 초기값
    x_h_init = 1.0
    # 2분법 호출
    result = root_finding.bisection(experiment.problem_to_solve, x_l_init, x_h_init, 1e-9)
    # 결과 표시
    print "result =", result
Beispiel #8
0
import numpy as np
import math

from root_finding import bisection


def h(x: float) -> float:
    return math.exp(1)**x - 1.5


if isinstance(h(0.0), float):
    x = bisection(h, 0.0, 1, 1e-3)
    print(f"exp({x:g}) =", np.exp(x))
Beispiel #9
0
# to test repl embedding
# press [play] to run

import root_finding as rf


def f(x):
    return 10 - x * x


print(rf.bisection(f, 0, 5, 1e-5))
Beispiel #10
0
 def test_bisection(self):
     result = rf.bisection(f, 0.0001, 100, epsilon=1e-8)
     self.assertAlmostEqual(0.0, f(result), places=3)