Beispiel #1
0
def calculateBlackHoleLifetimeOperator( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_lifetime: invalid argument' )

    mass = calculateBlackHoleMass( measurement )

    lifetime = divide( getProduct( [ getPower( mass, 3 ), 5120, pi,
                                     getPower( getConstant( 'newton_constant' ), 2 ) ] ),
                       getProduct( [ getConstant( 'reduced_planck_constant' ),
                                     getPower( getConstant( 'speed_of_light' ), 4 ) ] ) )

    return lifetime.convert( 'seconds' )
Beispiel #2
0
def calculateBlackHoleTemperatureOperator( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_temperature: invalid argument' )

    mass = calculateBlackHoleMass( measurement )

    temperature = divide( getProduct( [ getConstant( 'reduced_planck_constant' ),
                                        getPower( getConstant( 'speed_of_light' ), 3 ) ] ),
                          getProduct( [ mass, 8, getConstant( 'boltzmann_constant' ), pi,
                                        getConstant( 'newton_constant' ) ] ) )

    return temperature.convert( 'kelvin' )
Beispiel #3
0
def calculateOrbitalVelocityOperator( measurement1, measurement2 ):
    '''
    To solve the velocity of a circular orbit, we need Newton's gravitational
    constant and two of the following three items:

    G = Newton's gravitational constant

    m = planetary mass (i.e., mass of the thing being orbited)
    r = orbit radius (the distance from the center of mass)
    T = orbital period

    ---- velocity in terms of mass and radius
    v = sqrt( G*m/r )

    ---- velocity in terms of radius and period
    v = 2*pi*r/T

    ---- velocity in terms of mass and period
    v = ( 2*pi*cbrt( T^2*G*m/4*pi^2 ) ) / T
    '''
    validUnitTypes = [
        [ 'mass', 'time' ],
        [ 'length', 'time' ],
        [ 'mass', 'length' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'orbital_velocity\' requires specific measurement types (see help)' )

    if 'mass' in arguments:
        mass = arguments[ 'mass' ]

        if 'length' in arguments:
            bRadius = True
            radius = arguments[ 'length' ]
        else:
            bRadius = False
            period = arguments[ 'time' ]
    else:
        # radius and period
        radius = arguments[ 'length' ]
        period = arguments[ 'time' ]
        velocity = divide( getProduct( [ 2, pi, radius ] ), period )
        return velocity.convert( 'meter/second' )

    if bRadius:
        # mass and radius
        velocity = getRoot( divide( multiply( getConstant( 'newton_constant' ), mass ), radius ), 2 )
    else:
        # mass and period
        term = divide( getProduct( [ period, period, getConstant( 'newton_constant' ), mass ] ),
                       getProduct( [ 4, pi, pi ] ) )

        velocity = divide( getProduct( [ 2, pi, getRoot( term, 3 ) ] ), period )

    return velocity.convert( 'meter/second' )
Beispiel #4
0
def calculateOrbitalVelocity( measurement1, measurement2 ):
    '''
    To solve the velocity of a circular orbit, we need Newton's gravitational
    constant and two of the following three items:

    G = Newton's gravitational constant

    m = planetary mass (i.e., mass of the thing being orbited)
    r = orbit radius (the distance from the center of mass)
    T = orbital period

    ---- velocity in terms of mass and radius
    v = sqrt( G*m/r )

    ---- velocity in terms of radius and period
    v = 2*pi*r/T

    ---- velocity in terms of mass and period
    v = ( 2*pi*cbrt( T^2*G*m/4*pi^2 ) ) / T
    '''
    validUnitTypes = [
        [ 'mass', 'time' ],
        [ 'length', 'time' ],
        [ 'mass', 'length' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'orbital_velocity\' requires specific measurement types (see help)' )

    if 'mass' in arguments:
        mass = arguments[ 'mass' ]

        if 'length' in arguments:
            bRadius = True
            radius = arguments[ 'length' ]
        else:
            bRadius = False
            period = arguments[ 'time' ]
    else:
        # radius and period
        radius = arguments[ 'length' ]
        period = arguments[ 'time' ]
        velocity = divide( getProduct( [ 2, pi, radius ] ), period )
        return velocity.convert( 'meter/second' )

    if bRadius:
        # mass and radius
        velocity = getRoot( divide( multiply( getConstant( 'newton_constant' ), mass ), radius ), 2 )
    else:
        # mass and period
        term = divide( getProduct( [ period, period, getConstant( 'newton_constant' ), mass ] ),
                       getProduct( [ 4, pi, pi ] ) )

        velocity = divide( getProduct( [ 2, pi, getRoot( term, 3 ) ] ), period )

    return velocity.convert( 'meter/second' )
Beispiel #5
0
def calculateOrbitalPeriod( measurement1, measurement2 ):
    '''
    To solve the period of a circular orbit, we need Newton's gravitational
    constant and two of the following three items:

    G = Newton's gravitational constant

    m = planetary mass (i.e., mass of the thing being orbited)
    r = orbit radius (the distance from the center of mass)
    v = orbital velocity

    ---- period in terms of radius and mass
    T = 2*pi*sqrt( r^3/G*m )

    ---- period in terms of radius and velocity
    T = 2*pi*r/v

    ---- period in terms of mass and velocity
    T = 2*pi*G*m/v^3
    '''
    validUnitTypes = [
        [ 'mass', 'length' ],
        [ 'velocity', 'length' ],
        [ 'mass', 'velocity' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'orbital_period\' requires specific measurement types (see help)' )

    if 'mass' in arguments:
        mass = arguments[ 'mass' ]

        if 'length' in arguments:
            bRadius = True
            radius = arguments[ 'length' ]
        else:
            bRadius = False
            velocity = arguments[ 'velocity' ]
    else:
        # radius and velocity
        radius = arguments[ 'length' ]
        velocity = arguments[ 'velocity' ]
        period = divide( getProduct( [ 2, pi, radius ] ), velocity )
        return period.convert( 'second' )

    if bRadius:
        # radius and mass
        term = divide( getPower( radius, 3 ), multiply( getConstant( 'newton_constant' ), mass ) )
        period = getProduct( [ 2, pi, getRoot( term, 2 ) ] )
    else:
        # velocity and mass
        period = divide( getProduct( [ 2, pi, getConstant( 'newton_constant' ), mass ] ),
                         getPower( velocity, 3 ) )

    return period.convert( 'second' )
Beispiel #6
0
def calculateOrbitalPeriodOperator( measurement1, measurement2 ):
    '''
    To solve the period of a circular orbit, we need Newton's gravitational
    constant and two of the following three items:

    G = Newton's gravitational constant

    m = planetary mass (i.e., mass of the thing being orbited)
    r = orbit radius (the distance from the center of mass)
    v = orbital velocity

    ---- period in terms of radius and mass
    T = 2*pi*sqrt( r^3/G*m )

    ---- period in terms of radius and velocity
    T = 2*pi*r/v

    ---- period in terms of mass and velocity
    T = 2*pi*G*m/v^3
    '''
    validUnitTypes = [
        [ 'mass', 'length' ],
        [ 'velocity', 'length' ],
        [ 'mass', 'velocity' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'orbital_period\' requires specific measurement types (see help)' )

    if 'mass' in arguments:
        mass = arguments[ 'mass' ]

        if 'length' in arguments:
            bRadius = True
            radius = arguments[ 'length' ]
        else:
            bRadius = False
            velocity = arguments[ 'velocity' ]
    else:
        # radius and velocity
        radius = arguments[ 'length' ]
        velocity = arguments[ 'velocity' ]
        period = divide( getProduct( [ 2, pi, radius ] ), velocity )
        return period.convert( 'second' )

    if bRadius:
        # radius and mass
        term = divide( getPower( radius, 3 ), multiply( getConstant( 'newton_constant' ), mass ) )
        period = getProduct( [ 2, pi, getRoot( term, 2 ) ] )
    else:
        # velocity and mass
        period = divide( getProduct( [ 2, pi, getConstant( 'newton_constant' ), mass ] ),
                         getPower( velocity, 3 ) )

    return period.convert( 'second' )
Beispiel #7
0
def calculateOrbitalMassOperator( measurement1, measurement2 ):
    '''
    To solve for the planetary mass for an object in a circular orbit, we need
    Newton's gravitational constant and two of the following three items:

    G = Newton's gravitational constant

    T = orbital period
    v = orbital velocity
    r = orbit radius (the distance from the center of mass)

    ---- mass in terms of period and velocity
    m = v^3*T/2*pi*G

    ---- mass in terms of period and radius
    m = 4*pi^2*r3/G*T^2

    ---- mass in terms of velocity and radius
    m = v^2*r/G
    '''
    validUnitTypes = [
        [ 'time', 'length' ],
        [ 'velocity', 'length' ],
        [ 'time', 'velocity' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'orbital_mass\' requires specific measurement types (see help)' )

    if 'time' in arguments:
        period = arguments[ 'time' ]

        if 'length' in arguments:
            bRadius = True
            radius = arguments[ 'length' ]
        else:
            bRadius = False
            velocity = arguments[ 'velocity' ]
    else:
        # velocity and radius
        radius = arguments[ 'length' ]
        velocity = arguments[ 'velocity' ]
        mass = divide( getProduct( [ velocity, velocity, radius ] ), getConstant( 'newton_constant' ) )
        return mass.convert( 'kilogram' )

    if bRadius:
        # radius and period
        mass = divide( getProduct( [ 4, pi, pi, radius, radius, radius ] ),
                       getProduct( [ getConstant( 'newton_constant' ), period, period ] ) )
    else:
        # velocity and period
        mass = divide( getProduct( [ velocity, velocity, velocity, period ] ),
                       getProduct( [ 2, pi, getConstant( 'newton_constant' ) ] ) )

    return mass.convert( 'kilogram' )
Beispiel #8
0
def calculateOrbitalRadius( measurement1, measurement2 ):
    '''
    To solve the radius of a circular orbit, we need Newton's gravitational
    constant and two of the following three items:

    G = Newton's gravitational constant

    m = planetary mass (i.e., mass of the thing being orbited)
    T = orbital period
    v = orbital velocity

    ---- radius in terms of period and mass
    r = cbrt( T^2*G*m/4*pi^2 )

    ---- radius in terms of velocity and mass
    r = G*m/v^2

    ---- radius in terms of velocity and period
    r = v*T/2*pi
    '''
    validUnitTypes = [
        [ 'mass', 'time' ],
        [ 'velocity', 'time' ],
        [ 'mass', 'velocity' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'orbital_radius\' requires specific measurement types (see help)' )

    if 'mass' in arguments:
        mass = arguments[ 'mass' ]

        if 'time' in arguments:
            bPeriod = True
            period = arguments[ 'time' ]
        else:
            bPeriod = False
            velocity = arguments[ 'velocity' ]
    else:
        # period and velocity
        period = arguments[ 'time' ]
        velocity = arguments[ 'velocity' ]
        radius = divide( multiply( velocity, period ), fmul( 2, pi ) )
        return radius.convert( 'meter' )

    if bPeriod:
        # period and mass
        term = divide( getProduct( [ getPower( period, 2 ), getConstant( 'newton_constant' ), mass ] ),
                       fmul( 4, power( pi, 2 ) ) )
        radius = getRoot( term, 3 )
    else:
        # velocity and mass
        radius = divide( multiply( getConstant( 'newton_constant' ), mass ), getPower( velocity, 2 ) )

    return radius.convert( 'meter' )
Beispiel #9
0
def calculateOrbitalMass( measurement1, measurement2 ):
    '''
    To solve for the planetary mass for an object in a circular orbit, we need
    Newton's gravitational constant and two of the following three items:

    G = Newton's gravitational constant

    T = orbital period
    v = orbital velocity
    r = orbit radius (the distance from the center of mass)

    ---- mass in terms of period and velocity
    m = v^3*T/2*pi*G

    ---- mass in terms of period and radius
    m = 4*pi^2*r3/G*T^2

    ---- mass in terms of velocity and radius
    m = v^2*r/G
    '''
    validUnitTypes = [
        [ 'time', 'length' ],
        [ 'velocity', 'length' ],
        [ 'time', 'velocity' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'orbital_mass\' requires specific measurement types (see help)' )

    if 'time' in arguments:
        period = arguments[ 'time' ]

        if 'length' in arguments:
            bRadius = True
            radius = arguments[ 'length' ]
        else:
            bRadius = False
            velocity = arguments[ 'velocity' ]
    else:
        # velocity and radius
        radius = arguments[ 'length' ]
        velocity = arguments[ 'velocity' ]
        mass = divide( getProduct( [ velocity, velocity, radius ] ), getConstant( 'newton_constant' ) )
        return mass.convert( 'kilogram' )

    if bRadius:
        # radius and period
        mass = divide( getProduct( [ 4, pi, pi, radius, radius, radius ] ),
                       getProduct( [ getConstant( 'newton_constant' ), period, period ] ) )
    else:
        # velocity and period
        mass = divide( getProduct( [ velocity, velocity, velocity, period ] ),
                       getProduct( [ 2, pi, getConstant( 'newton_constant' ) ] ) )

    return mass.convert( 'kilogram' )
Beispiel #10
0
def calculateOrbitalRadiusOperator( measurement1, measurement2 ):
    '''
    To solve the radius of a circular orbit, we need Newton's gravitational
    constant and two of the following three items:

    G = Newton's gravitational constant

    m = planetary mass (i.e., mass of the thing being orbited)
    T = orbital period
    v = orbital velocity

    ---- radius in terms of period and mass
    r = cbrt( T^2*G*m/4*pi^2 )

    ---- radius in terms of velocity and mass
    r = G*m/v^2

    ---- radius in terms of velocity and period
    r = v*T/2*pi
    '''
    validUnitTypes = [
        [ 'mass', 'time' ],
        [ 'velocity', 'time' ],
        [ 'mass', 'velocity' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'orbital_radius\' requires specific measurement types (see help)' )

    if 'mass' in arguments:
        mass = arguments[ 'mass' ]

        if 'time' in arguments:
            bPeriod = True
            period = arguments[ 'time' ]
        else:
            bPeriod = False
            velocity = arguments[ 'velocity' ]
    else:
        # period and velocity
        period = arguments[ 'time' ]
        velocity = arguments[ 'velocity' ]
        radius = divide( multiply( velocity, period ), fmul( 2, pi ) )
        return radius.convert( 'meter' )

    if bPeriod:
        # period and mass
        term = divide( getProduct( [ getPower( period, 2 ), getConstant( 'newton_constant' ), mass ] ),
                       fmul( 4, power( pi, 2 ) ) )
        radius = getRoot( term, 3 )
    else:
        # velocity and mass
        radius = divide( multiply( getConstant( 'newton_constant' ), mass ), getPower( velocity, 2 ) )

    return radius.convert( 'meter' )
Beispiel #11
0
def calculateTidalForce( mass, distance, delta ):
    mass.validateUnits( 'mass' )
    distance.validateUnits( 'length' )
    delta.validateUnits( 'length' )

    tidal_force = divide( getProduct( [ 2, getConstant( 'newton_constant' ), mass, delta ] ),
                          getPower( distance, 3 ) )

    return tidal_force.convert( 'meter/second^2' )
Beispiel #12
0
def calculateTimeDilationOperator( velocity ):
    velocity.validateUnits( 'velocity' )

    ratio = divide( velocity, getConstant( 'speed_of_light' ) )

    if ratio == 1:
        return inf

    return fdiv( 1, sqrt( fsub( 1, power( ratio, 2 ) ) ) )
Beispiel #13
0
def calculateTidalForceOperator( mass, distance, delta ):
    mass.validateUnits( 'mass' )
    distance.validateUnits( 'length' )
    delta.validateUnits( 'length' )

    tidalForce = divide( getProduct( [ 2, getConstant( 'newton_constant' ), mass, delta ] ),
                         getPower( distance, 3 ) )

    return tidalForce.convert( 'meter/second^2' )
Beispiel #14
0
def calculateTimeDilation( velocity ):
    velocity.validateUnits( 'velocity' )

    c_ratio = divide( velocity, getConstant( 'speed_of_light' ) ).value

    if c_ratio == 1:
        return inf

    return fdiv( 1, sqrt( fsub( 1, power( c_ratio, 2 ) ) ) )
Beispiel #15
0
def calculateBlackHoleRadiusOperator( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_radius: invalid argument' )

    mass = calculateBlackHoleMass( measurement )

    radius = getProduct( [ 2, getConstant( 'newton_constant' ), mass ] ). \
             divide( getPower( getConstant( 'speed_of_light' ), 2 ) )
    return radius.convert( 'meter' )
Beispiel #16
0
def calculateBlackHoleSurfaceArea( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_surface_area: invalid argument' )

    mass = calculateBlackHoleMass( measurement )

    area = divide( getProduct( [ 16, pi, getPower( getConstant( 'newton_constant' ), 2 ), getPower( mass, 2 ) ] ),
                   getPower( getConstant( 'speed_of_light' ), 4 ) )
    return area.convert( 'meter^2' )
Beispiel #17
0
def calculateBlackHoleSurfaceGravityOperator( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_surface_gravity: invalid argument' )

    mass = calculateBlackHoleMass( measurement )

    gravity = divide( getPower( getConstant( 'speed_of_light' ), 4 ),
                      getProduct( [ mass, 4, getConstant( 'newton_constant' ) ] ) )
    return gravity.convert( 'meter/second^2' )
Beispiel #18
0
def calculateBlackHoleLifetime( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_lifetime: invalid argument' )

    mass = calculateBlackHoleMass( measurement )

    lifetime = divide( getProduct( [ getPower( mass, 3 ), 5120, pi, getPower( getConstant( 'newton_constant' ), 2 ) ] ),
                       getProduct( [ getConstant( 'reduced_planck_constant' ), getPower( getConstant( 'speed_of_light' ), 4 ) ] ) )

    return lifetime.convert( 'seconds' )
Beispiel #19
0
def calculateBlackHoleTemperature( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_temperature: invalid argument' )

    mass = calculateBlackHoleMass( measurement )

    temperature = divide( getProduct( [ getConstant( 'reduced_planck_constant' ), getPower( getConstant( 'speed_of_light' ), 3 ) ] ),
                          getProduct( [ mass, 8, getConstant( 'boltzmann_constant' ), pi, getConstant( 'newton_constant' ) ] ) )

    return temperature.convert( 'kelvin' )
Beispiel #20
0
def calculateBlackHoleEntropy( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_entropy: invalid argument' )

    mass = calculateBlackHoleMass( measurement )

    entropy = divide( getProduct( [ getPower( mass, 2 ), 4, pi, getConstant( 'newton_constant' ) ] ),
                     getProduct( [ getConstant( 'reduced_planck_constant' ), getConstant( 'speed_of_light' ), getLog( 10.0 ) ] ) )

    return getConstant( 'boltzmann_constant' ).multiply( entropy ).convert( 'bit' )
Beispiel #21
0
def calculateBlackHoleEntropyOperator( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_entropy: invalid argument' )

    mass = calculateBlackHoleMass( measurement )

    entropy = divide( getProduct( [ getPower( mass, 2 ), 4, pi, getConstant( 'newton_constant' ) ] ),
                      getProduct( [ getConstant( 'reduced_planck_constant' ),
                                    getConstant( 'speed_of_light' ), ln( 10.0 ) ] ) )

    return getConstant( 'boltzmann_constant' ).multiply( entropy ).convert( 'bit' )
Beispiel #22
0
def calculateBlackHoleSurfaceGravity( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_surface_gravity: invalid argument' )

    mass = calculateBlackHoleMass( measurement )

    gravity = divide( getPower( getConstant( 'speed_of_light' ), 4 ), getProduct( [ mass, 4, getConstant( 'newton_constant' ) ] ) )
    return gravity.convert( 'meter/second^2' )
Beispiel #23
0
def calculateBlackHoleRadius( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_radius: invalid argument' )

    mass = calculateBlackHoleMass( measurement )

    radius = getProduct( [ 2, getConstant( 'newton_constant' ), mass ] ).divide( getPower( getConstant( 'speed_of_light' ), 2 ) )
    return radius.convert( 'meter' )
Beispiel #24
0
def calculateSurfaceGravity( measurement1, measurement2 ):
    validUnitTypes = [
        [ 'mass', 'density' ],
        [ 'mass', 'length' ],
        [ 'mass', 'volume' ],
        [ 'density', 'length' ],
        [ 'density', 'volume' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'surface_gravity\' requires length and mass measurements' )

    if 'mass' in arguments:
        mass = arguments[ 'mass' ]

        if 'length' in arguments:
            length = arguments[ 'length' ]
        elif 'density' in arguments:
            volume = divide( mass, arguments[ 'density' ] )
            length = getKSphereRadius( volume, 3 )
        else:
            length = getKSphereRadius( arguments[ 'volume' ], 3 )
    elif 'volume' in arguments:
        # density, volume
        volume = arguments[ 'volume' ]
        mass = multiply( arguments[ 'density' ], volume )
        length = getKSphereRadius( volume, 3 )
    else:
        # density, length
        length = arguments[ 'length' ]
        volume = getPower( length, 3 )
        mass = multiply( arguments[ 'density' ], volume )

    gravity = multiply( divide( mass, getPower( length, 2 ) ), getConstant( 'newton_constant' ) )
    return gravity.convert( 'meters/seconds^2' )
Beispiel #25
0
def calculateSurfaceGravityOperator( measurement1, measurement2 ):
    validUnitTypes = [
        [ 'mass', 'density' ],
        [ 'mass', 'length' ],
        [ 'mass', 'volume' ],
        [ 'density', 'length' ],
        [ 'density', 'volume' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'surface_gravity\' requires length and mass measurements' )

    if 'mass' in arguments:
        mass = arguments[ 'mass' ]

        if 'length' in arguments:
            length = arguments[ 'length' ]
        elif 'density' in arguments:
            volume = divide( mass, arguments[ 'density' ] )
            length = getKSphereRadius( volume, 3 )
        else:
            length = getKSphereRadius( arguments[ 'volume' ], 3 )
    elif 'volume' in arguments:
        # density, volume
        volume = arguments[ 'volume' ]
        mass = multiply( arguments[ 'density' ], volume )
        length = getKSphereRadius( volume, 3 )
    else:
        # density, length
        length = arguments[ 'length' ]
        volume = getPower( length, 3 )
        mass = multiply( arguments[ 'density' ], volume )

    gravity = multiply( divide( mass, getPower( length, 2 ) ), getConstant( 'newton_constant' ) )
    return gravity.convert( 'meters/seconds^2' )
Beispiel #26
0
def calculateMassEquivalence( energy ):
    energy.validateUnits( 'energy' )

    mass = divide( energy, multiply( getConstant( 'speed_of_light' ), getConstant( 'speed_of_light' ) ) )
    return mass.convert( 'kilogram' )
Beispiel #27
0
def calculateEnergyEquivalence( mass ):
    mass.validateUnits( 'mass' )

    energy = getProduct( [ mass, getConstant( 'speed_of_light' ), getConstant( 'speed_of_light' ) ] )
    return energy.convert( 'joule' )
Beispiel #28
0
def calculateBlackHoleMass( measurement ):
    # pylint: disable=line-too-long
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_mass: invalid argument' )

    if 'mass' in arguments:
        return arguments[ 'mass' ].convert( 'kilogram' )

    if 'length' in arguments:
        radius = arguments[ 'length' ]

        return divide( getProduct( [ getPower( getConstant( 'speed_of_light' ), 2 ), radius ] ),
                       getProduct( [ 2, getConstant( 'newton_constant' ) ] ) ).convert( 'kilogram' )

    if 'acceleration' in arguments:
        gravity = arguments[ 'acceleration' ]

        return divide( getPower( getConstant( 'speed_of_light' ), 4 ),
                       getProduct( [ 4, getConstant( 'newton_constant' ), gravity ] ) ).convert( 'kilogram' )

    if 'area' in arguments:
        area = arguments[ 'area' ].convert( 'meters^2' )

        return getRoot( divide( getProduct( [ getPower( getConstant( 'speed_of_light' ), 4 ), area ] ),
                                getProduct( [ 16, pi, getPower( getConstant( 'newton_constant' ), 2 ) ] ) ), 2 ).convert( 'kilogram' )

    if 'temperature' in arguments:
        temperature = arguments[ 'temperature' ]

        return divide( getProduct( [ getConstant( 'reduced_planck_constant' ), getPower( getConstant( 'speed_of_light' ), 3 ) ] ),
                       getProduct( [ temperature, 8, getConstant( 'boltzmann_constant' ), pi, getConstant( 'newton_constant' ) ] ) ).convert( 'kilogram' )

    if 'power' in arguments:
        luminosity = arguments[ 'power' ]

        return getRoot( divide( getProduct( [ getConstant( 'reduced_planck_constant' ), getPower( getConstant( 'speed_of_light' ), 6 ) ] ),
                                getProduct( [ luminosity.convert( 'kilogram*meter^2/second^3' ), 15360, pi,
                                              getPower( getConstant( 'newton_constant' ), 2 ) ] ) ), 2  ).convert( 'kilogram' )

    if 'tidal_force' in arguments:
        tidalForce = arguments[ 'tidal_force' ]

        return getRoot( divide( getPower( getConstant( 'speed_of_light' ), 6 ),
                                getProduct( [ 4, tidalForce, getPower( getConstant( 'newton_constant' ), 2 ) ] ) ), 2 ).convert( 'kilogram' )

    if 'time' in arguments:
        lifetime = arguments[ 'time' ]

        return getRoot( divide( getProduct( [ lifetime, getConstant( 'reduced_planck_constant' ), getPower( getConstant( 'speed_of_light' ), 4 ) ] ),
                                getProduct( [ 5120, pi, getPower( getConstant( 'newton_constant' ), 2 ) ] ) ), 3 ).convert( 'kilogram' )

    raise ValueError( 'invalid arguments to black hole operator' )
Beispiel #29
0
def calculateEscapeVelocityOperator( mass, radius ):
    mass.validateUnits( 'mass' )
    radius.validateUnits( 'length' )

    velocity = getRoot( getProduct( [ 2, getConstant( 'newton_constant' ), mass ] ).divide( radius ), 2 )
    return velocity.convert( 'meter/second' )
Beispiel #30
0
def calculateEnergyEquivalenceOperator( mass ):
    mass.validateUnits( 'mass' )

    energy = getProduct( [ mass, getConstant( 'speed_of_light' ), getConstant( 'speed_of_light' ) ] )
    return energy.convert( 'joule' )
Beispiel #31
0
def calculateMassEquivalenceOperator( energy ):
    energy.validateUnits( 'energy' )

    mass = divide( energy, multiply( getConstant( 'speed_of_light' ), getConstant( 'speed_of_light' ) ) )
    return mass.convert( 'kilogram' )
Beispiel #32
0
def calculateEscapeVelocity( mass, radius ):
    mass.validateUnits( 'mass' )
    radius.validateUnits( 'length' )

    velocity = getRoot( getProduct( [ 2, getConstant( 'newton_constant' ), mass ] ).divide( radius ), 2 )
    return velocity.convert( 'meter/second' )
Beispiel #33
0
def calculateBlackHoleMass( measurement ):
    validUnitTypes = [
        [ 'mass' ],
        [ 'length' ],
        [ 'acceleration' ],
        [ 'area' ],
        [ 'temperature' ],
        [ 'power' ],
        [ 'tidal_force' ],
        [ 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement ], validUnitTypes )

    if not arguments:
        raise ValueError( 'black_hole_mass: invalid argument' )

    if 'mass' in arguments:
        return arguments[ 'mass' ].convert( 'kilogram' )
    elif 'length' in arguments:
        radius = arguments[ 'length' ]

        return divide( getProduct( [ getPower( getConstant( 'speed_of_light' ), 2 ), radius ] ),
                       getProduct( [ 2, getConstant( 'newton_constant' ) ] ) ).convert( 'kilogram' )
    elif 'acceleration' in arguments:
        gravity = arguments[ 'acceleration' ]

        return divide( getPower( getConstant( 'speed_of_light' ), 4 ),
                       getProduct( [ 4, getConstant( 'newton_constant' ), gravity ] ) ).convert( 'kilogram' )
    elif 'area' in arguments:
        area = arguments[ 'area' ].convert( 'meters^2' )

        return getRoot( divide( getProduct( [ getPower( getConstant( 'speed_of_light' ), 4 ), area ] ),
                                getProduct( [ 16, pi, getPower( getConstant( 'newton_constant' ), 2 ) ] ) ), 2 ).convert( 'kilogram' )
    elif 'temperature' in arguments:
        temperature = arguments[ 'temperature' ]

        return divide( getProduct( [ getConstant( 'reduced_planck_constant' ), getPower( getConstant( 'speed_of_light' ), 3 ) ] ),
                       getProduct( [ temperature, 8, getConstant( 'boltzmann_constant' ), pi, getConstant( 'newton_constant' ) ] ) ).convert( 'kilogram' )
    elif 'power' in arguments:
        luminosity = arguments[ 'power' ]

        return getRoot( divide( getProduct( [ getConstant( 'reduced_planck_constant' ), getPower( getConstant( 'speed_of_light' ), 6 ) ] ),
                                getProduct( [ luminosity.convert( 'kilogram*meter^2/second^3' ), 15360, pi,
                                     getPower( getConstant( 'newton_constant' ), 2 ) ] ) ), 2  ).convert( 'kilogram' )
    elif 'tidal_force' in arguments:
        tidal_force = arguments[ 'tidal_force' ]

        return getRoot( divide( getPower( getConstant( 'speed_of_light' ), 6 ),
                                getProduct( [ 4, tidal_force, getPower( getConstant( 'newton_constant' ), 2 ) ] ) ), 2 ).convert( 'kilogram' )
    elif 'time' in arguments:
        lifetime = arguments[ 'time' ]

        return getRoot( divide( getProduct( [ lifetime, getConstant( 'reduced_planck_constant' ), getPower( getConstant( 'speed_of_light' ), 4 ) ] ),
                                getProduct( [ 5120, pi, getPower( getConstant( 'newton_constant' ), 2 ) ] ) ), 3 ).convert( 'kilogram' )

    raise ValueError( 'invalid arguments to black hole operator' )