Beispiel #1
0
def trace_plots(history, burnin):
    from rpy import r
    h = np.array(history)
    print "{} total, {} burning, {} remaining".format(len(history), burnin, len(history)-burnin)
    r.par(mfrow=[2,2])
    r.acf(h[burnin:])
    r.plot(h,xlab='',ylab='',main='')
    r.abline(v=burnin, col='blue')
    #r.hist(h[burnin:],breaks=30,xlab='',ylab='',main='histogram')
    r.plot(r.density(h[burnin:]), xlab='',ylab='',main='density')
Beispiel #2
0
def trace_plots(history, burnin):
    from rpy import r
    h = np.array(history)
    print "{} total, {} burning, {} remaining".format(len(history), burnin,
                                                      len(history) - burnin)
    r.par(mfrow=[2, 2])
    r.acf(h[burnin:])
    r.plot(h, xlab='', ylab='', main='')
    r.abline(v=burnin, col='blue')
    #r.hist(h[burnin:],breaks=30,xlab='',ylab='',main='histogram')
    r.plot(r.density(h[burnin:]), xlab='', ylab='', main='density')
    def plotBundle(self, bundleD, full_filename, colorsD=None, bundlePointsD=None, legendL=None, title=None, y_max=None):

        if y_max is None:
            y_max = 0.4
            
        if legendL is None:
            legendL = bundleD.keys()
            legendL.sort()
            
        if title is None:
            title = 'data'            

        bundleIdL = bundleD.keys()
        bundleIdL.sort()

        if colorsD is None:            
            colorsL = r.rainbow(len(bundleIdL))
            colorsD = dict(zip(bundleIdL, colorsL))
        
        colorsL = [colorsD[x] for x in bundleIdL]
        
        time_min = min([len(bundleD[x]) for x in bundleD.keys()])
        timeVec = [0.5 * x for x in range(time_min)]

        try:
            r.png(full_filename, width=800, height=600)
            oldPar = r.par(xpd = True, mar = [x + y for (x,y) in zip(r.par()['mar'], [0,0,0,6])])
        
            print 'plot %s' % full_filename
            r.plot(timeVec, timeVec,
                   type='n',
                   main=title, ylim=(0, y_max),
                   xlab="time in hours after transfection", ylab="Relative Cell Counts",
                   pch=20, lwd=1, lty = 1, 
                   cex=1.0, cex_lab=1.2, cex_main=1.5)
        
        
            for bundleId in bundleIdL:
                
                if not bundlePointsD is None:
                    r.points(timeVec, bundlePointsD[bundleId],
                             col=colorsD[bundleId], pch=20,
                             lwd=1)
                    r.lines(timeVec, bundlePointsD[bundleId],
                            col=colorsD[bundleId],
                            lwd=1, lty = 1)

                r.lines(timeVec, bundleD[bundleId],
                        col=colorsD[bundleId],
                        lwd=3, lty = 1)

            r.legend(max(timeVec) * 1.1, y_max, legend=legendL, fill=colorsL, cex=1.0, bg= 'whitesmoke')
            r.par(oldPar)
            r.grid(col="darkgrey")
        
            r.dev_off() 
        except:
            r.dev_off()
            print full_filename + ' has not been printed.'
            

        return
    # Make the CanonicalProperties
    try:
        cp = CanonicalProperties(options.muninn_log_file, options.which)
    except CanonicalException, e:
        print parser.error(e)

    # Store all the plotting data
    data = []

    # Print which is used
    print "Using:", cp.fullname


    # Plot the required output
    r.pdf(options.output, width=options.width, height=options.height)      
    r.par(cex=options.cex)

    inv_beta = arange(options.inv_beta_min, options.inv_beta_max, 0.01)
    beta = 1.0/inv_beta

    lnZ = vectorize(cp.lnZ)(beta)
    r.plot(inv_beta, lnZ, type='l', xlab=r("expression(beta**-1)"), ylab=r("""expression(paste("ln ", Z(beta)))"""))
    data.append((cp.number, "lnZ", (inv_beta, lnZ)))

    betaF = vectorize(cp.betaF)(beta)
    r.plot(inv_beta, betaF, type='l', xlab=r("expression(beta**-1)"), ylab=r("expression(F(beta) * beta)"))
    data.append((cp.number, "betaF", (inv_beta, betaF)))

    S = vectorize(cp.S)(beta)
    r.plot(inv_beta, S, type='l', xlab=r("expression(beta**-1)"), ylab=r("expression(S(beta) / k[B])"))
    data.append((cp.number, "S", (inv_beta, S)))
Beispiel #5
0
def plot(outfile, data, out_format='png'):
    w = int(round(len(data)/4.0))

    if out_format == 'png':
        r.png(outfile, width=w*100, height=1000, res=72)
    elif out_format == 'pdf':
        r.pdf(outfile, width=w, height=10)
    else:
        raise Exception('Unrecognised format: ' + str(out_format))

    print("total: " + str(len(data)))

    series = []
    points = {'translate': [], 'preprocessing': []}

    for dat in data:
        points['translate'].append(float(dat['translate']))
        points['preprocessing'].append(float(dat['preprocessing']))

    xlabels = []
    for k, v in data[0].iteritems():
        if k not in ["problem", 'translate', 'preprocessing']:
            series.append(k)
            points[k] = []

    index = 0
    for dat in data:
        for k in series:
            if dat[k] != 'no-plan':
                points[k].append(float(dat[k]) + \
                                 points['translate'][index] + \
                                 points['preprocessing'][index])
            else:
                points[k].append(-1000)
        xlabels.append(dat['problem'])
        index += 1

    max_value = max(iter([max(iter(points[k]))  for k in series]))
    yrange = (0, max_value)
    legend_labels = []

    x = [i for i in range(1,len(points['translate'])+1)]
    y = [-1000 for i in x]
    r.par(mar=(7,5,4,2))
    r.plot(x, y, main='', xlab="", ylab='',
           xaxt='n', yaxt='n', pch=0, ylim=yrange,
           mgp=(5,1,0))
    r.mtext("Problem", side=1, line=5)
    r.mtext("CPU Time (s)", side=2, line=3)

    pch_start = 1
    pch_index = pch_start
    # plotting "translate"
    #r.plot(x, points['translate'], main='',
    #       xlab='', ylab='Time (s)',
    #       xaxt='n', yaxt='n',
    #       pch=0, ylim=yrange)
    #legend_labels.append('translate')
    r.lines(x, points['translate'], lty=1)
    
    # preprocessing -- Removed since it's insignificant
    #r.points(x, points['preprocessing'], pch=pch_index)
    #pch_index =+ 1

    # planner output
    for k in series:
        if k != 'translate' and k != 'preporcessing':
            r.points(x, points[k], pch=pch_index)
            pch_index += 1
            legend_labels.append("FD+" + k.upper())

    # put x-axis labels
    for i in range(0, len(xlabels)):
        r.axis(side=1, at=i+1, labels=xlabels[i], las=2)

    # put y-axis labels
    base, step = get_y_step(max_value)
    print("base: " + str(base) + " -- step: " + str(step))
    y = base
    for i in range(0, step):
        r.axis(side=2, at=y, labels=str(y), las=2)
        y += base

    # legend
    r.legend(1, max_value, legend_labels, pch=[i for i in range(pch_start, pch_index)])

    r.dev_off()
Beispiel #6
0
def plot(outfile, data, out_format='png'):
    w = int(round(len(data) / 4.0))

    if out_format == 'png':
        r.png(outfile, width=w * 100, height=1000, res=72)
    elif out_format == 'pdf':
        r.pdf(outfile, width=w, height=10)
    else:
        raise Exception('Unrecognised format: ' + str(out_format))

    print("total: " + str(len(data)))

    series = []
    points = {'translate': [], 'preprocessing': []}

    for dat in data:
        points['translate'].append(float(dat['translate']))
        points['preprocessing'].append(float(dat['preprocessing']))

    xlabels = []
    for k, v in data[0].iteritems():
        if k not in ["problem", 'translate', 'preprocessing']:
            series.append(k)
            points[k] = []

    index = 0
    for dat in data:
        for k in series:
            if dat[k] != 'no-plan':
                points[k].append(float(dat[k]) + \
                                 points['translate'][index] + \
                                 points['preprocessing'][index])
            else:
                points[k].append(-1000)
        xlabels.append(dat['problem'])
        index += 1

    max_value = max(iter([max(iter(points[k])) for k in series]))
    yrange = (0, max_value)
    legend_labels = []

    x = [i for i in range(1, len(points['translate']) + 1)]
    y = [-1000 for i in x]
    r.par(mar=(7, 5, 4, 2))
    r.plot(x,
           y,
           main='',
           xlab="",
           ylab='',
           xaxt='n',
           yaxt='n',
           pch=0,
           ylim=yrange,
           mgp=(5, 1, 0))
    r.mtext("Problem", side=1, line=5)
    r.mtext("CPU Time (s)", side=2, line=3)

    pch_start = 1
    pch_index = pch_start
    # plotting "translate"
    #r.plot(x, points['translate'], main='',
    #       xlab='', ylab='Time (s)',
    #       xaxt='n', yaxt='n',
    #       pch=0, ylim=yrange)
    #legend_labels.append('translate')
    r.lines(x, points['translate'], lty=1)

    # preprocessing -- Removed since it's insignificant
    #r.points(x, points['preprocessing'], pch=pch_index)
    #pch_index =+ 1

    # planner output
    for k in series:
        if k != 'translate' and k != 'preporcessing':
            r.points(x, points[k], pch=pch_index)
            pch_index += 1
            legend_labels.append("FD+" + k.upper())

    # put x-axis labels
    for i in range(0, len(xlabels)):
        r.axis(side=1, at=i + 1, labels=xlabels[i], las=2)

    # put y-axis labels
    base, step = get_y_step(max_value)
    print("base: " + str(base) + " -- step: " + str(step))
    y = base
    for i in range(0, step):
        r.axis(side=2, at=y, labels=str(y), las=2)
        y += base

    # legend
    r.legend(1,
             max_value,
             legend_labels,
             pch=[i for i in range(pch_start, pch_index)])

    r.dev_off()