Beispiel #1
0
    def act(self, observation):
        # get current network
        net = observation.net
        # generate current request
        src, dst, bandwidth, duration = observation.request
        # get pre-calculated k-sp path
        sd_tuple = (src, dst)
        paths = self.path_table[sort_tuple(sd_tuple)]

        # Search KSP-FF
        candidates = []
        for i, path in enumerate(paths):
            path_len = net.distance(path)  # physical length of the path
            n_req_slot = cal_slot(bandwidth, path_len)
            # calc entropy
            ent = edge_based_entropy(net, path, n_req_slot)
            min_ent = np.min(ent)
            slot_index = np.argmin(ent)
            # candidate (k-path, slot-idx, n_req_slot, entropy)
            candidates.append((i, int(slot_index), n_req_slot, min_ent))

        # search the minimum entropy among k-sp
        i_th, start_idx, n_req_slot, _ = min(candidates,
                                             key=lambda item: item[3])
        path = paths[i_th]

        act = Action(path, start_idx, n_req_slot, duration)
        return act
Beispiel #2
0
    def min_cut_candidates(self, obs) -> list:
        net = obs.net
        # generate current request
        src, dst, bandwidth, duration = obs.request
        # get pre-calculated k-sp path
        paths = self.path_table[sort_tuple((src, dst))]

        candidates = []
        min_n_cut = np.inf
        for path in paths:
            # calculate candidates of spectrum assignment
            path_slot = net.path_slot(path)
            path_len = net.distance(path)  # physical length of the path
            n_req_slot = cal_slot(bandwidth, path_len)
            num, start_indices, _ = k_consecutive_available_slot(
                path_slot, n_req_slot)

            if num > 0:
                # explore all candidates
                for start_idx in start_indices:
                    n_cut = count_cut(net, path, start_idx, n_req_slot)
                    if n_cut < min_n_cut:
                        min_n_cut = n_cut
                        # empty
                        candidates = []
                        # append
                        cand = Action(path, start_idx, n_req_slot, duration)
                        candidates.append(cand)
                    elif n_cut == min_n_cut:
                        # append
                        cand = Action(path, start_idx, n_req_slot, duration)
                        candidates.append(cand)

        return candidates
Beispiel #3
0
    def preprocess(self, obs):
        """
        """
        net = obs.net
        src, dst, bandwidth, duration = obs.request
        # get k-sp
        sd_tuple = sort_tuple((src, dst))
        paths = self.path_table[sd_tuple]

        fvec = []
        # Feature 1: onehot of source-destination nodes
        node_onehot = onehot_list(net.n_nodes)
        fvec += node_onehot[src]
        fvec += node_onehot[dst]
        # path information if there is no available path
        # all_zeros = [0 for _ in range(3 + 2)]
        all_nega_ones = [-1 for _ in range(3 + 2)]

        # Feature 2: Path information
        for path in paths:
            # spectrum utilization on the whole path
            path_slot = net.path_slot(path)
            # calc path-length and the required number of slots
            path_len = net.distance(path)
            req_n_slot = cal_slot(bandwidth, path_len)
            # wavelength assignment
            isFound, slot_start_indices, slot_continuous = k_consecutive_available_slot(
                path_slot, req_n_slot)

            if isFound:
                # normalized slot num is added
                # (required number of FS: 2 <= req_n_slot <= 9)
                fvec.append((req_n_slot - 5.5) / 3.5)
                # slot start idx
                fvec.append(2 * (slot_start_indices[0] - 0.5 * net.n_slot) /
                            net.n_slot)
                # slot continue
                fvec.append((slot_continuous[0] - 8) / 8)
                # total available FS's
                fvec.append(2 * (sum(slot_continuous) - 0.5 * net.n_slot) /
                            net.n_slot)
                # mean size of FS-blocks
                fvec.append((np.mean(slot_continuous) - 4) / 4)
            else:
                fvec += all_nega_ones

        fvec = np.array(fvec, dtype=np.float32)
        return fvec
Beispiel #4
0
    def sp_ff(self, obs):
        """Shortest path and first fit

        """
        net = obs.net
        src, dst, bandwidth, duration = obs.request
        # select shortest path
        path = self.path_table[sort_tuple((src, dst))][0]
        path_len = net.distance(path)
        n_req_slot = cal_slot(bandwidth, path_len)
        # target path slot
        path_slot = net.path_slot(path)
        # first fit
        start_idx = SpectrumAssignment.first_fit(path_slot, n_req_slot)
        if start_idx is None:
            return None
        else:
            return Action(path, start_idx, n_req_slot, duration)
Beispiel #5
0
    def map_drlout_to_action(self, obs, out):
        """Mapping RL outputs to KSP

        """
        net = obs.net
        s, d, bandwidth, duration = obs.request
        paths = self.path_table[sort_tuple((s, d))]
        # map
        path = paths[out]

        #required slots
        path_len = net.distance(path)
        n_req_slot = cal_slot(bandwidth, path_len)
        # FF
        path_slot = net.path_slot(path)
        slot_index = SpectrumAssignment.first_fit(path_slot, n_req_slot)
        if slot_index is None:
            return None
        else:
            return Action(path, slot_index, n_req_slot, duration)
Beispiel #6
0
    def act(self, observation):
        # get current network
        net = observation.net
        # generate current request
        src, dst, bandwidth, duration = observation.request

        sd_tuple = (src, dst)
        paths = self.path_table[sort_tuple(sd_tuple)]

        # Search assignable path & slot
        for path in paths:
            # physical length of the path
            path_len = net.distance(path)
            # number of requred slots
            n_req_slot = cal_slot(bandwidth, path_len)

            # spectrum assignment
            slot_idx = self.assign_spectrum(net, path, n_req_slot)

            if slot_idx is not None:
                return Action(path, slot_idx, n_req_slot, duration)

        return None