Beispiel #1
0
    [[9, 1, 4], [10, 1, 3], [0, 1, 2], [3, 1, 1], [9, 1, 1]],  # Mendon
    [[6, 1, 2], [10, 1, 0], [8, 1, 4], [10, 1, 0], [10, 1, 5]],  # TonyGrove
    [[7, 1, 0], [1, 1, 1], [10, 1, 0], [0, 1, 5], [1, 1, 3]]  # WaterLab
]
pdqParam = pd.DataFrame(pdqParams, columns=sensors, index=sites)
print(pdqParam)

#########################################
#  TEMPERATURE #
#########################################

# RULES BASED DETECTION #
#########################################
maximum = 18
minimum = -2
temp_df = rules_detect.range_check(temp_df, maximum, minimum)
length = 6
temp_df = rules_detect.persistence(temp_df, length)
size = rules_detect.group_size(temp_df)
temp_df = rules_detect.interpolate(temp_df)

# MODEL CREATION #
#########################################
p, d, q = pdqParam[sensor[0]][site]
print("p: " + str(p))
print("d: " + str(d))
print("q: " + str(q))
model_fit, residuals, predictions = modeling_utilities.build_arima_model(
    temp_df['observed'], p, d, q, summary=True)

# DETERMINE THRESHOLD AND DETECT ANOMALIES #
Beispiel #2
0
def ARIMA_detect(df,
                 sensor,
                 params,
                 rules=False,
                 plots=True,
                 summary=True,
                 output=True):
    """
    """
    print('\nProcessing ARIMA detections.')
    # RULES BASED DETECTION #
    if rules:
        df = rules_detect.range_check(df, params['max_range'],
                                      params['min_range'])
        df = rules_detect.persistence(df, params['persist'])
        size = rules_detect.group_size(df)
        df = rules_detect.interpolate(df)
        print(sensor +
              ' rules based detection complete. Longest detected group = ' +
              str(size))

    # MODEL CREATION #
    [p, d, q] = params['pdq']
    model_fit, residuals, predictions = modeling_utilities.build_arima_model(
        df['observed'], p, d, q, summary)
    print(sensor + ' ARIMA model complete.')

    # DETERMINE THRESHOLD AND DETECT ANOMALIES #
    threshold = anomaly_utilities.set_dynamic_threshold(
        residuals[0], params['window_sz'], params['alpha'],
        params['threshold_min'])
    threshold.index = residuals.index
    if plots:
        plt.figure()
        anomaly_utilities.plt_threshold(residuals, threshold, sensor)
        plt.show()
    print('Threshold determination complete.')
    detections = anomaly_utilities.detect_anomalies(df['observed'],
                                                    predictions,
                                                    residuals,
                                                    threshold,
                                                    summary=True)

    # WIDEN AND NUMBER ANOMALOUS EVENTS #
    df['labeled_event'] = anomaly_utilities.anomaly_events(
        df['labeled_anomaly'], params['widen'])
    df['detected_anomaly'] = detections['anomaly']
    df['all_anomalies'] = df.eval('detected_anomaly or anomaly')
    df['detected_event'] = anomaly_utilities.anomaly_events(
        df['all_anomalies'], params['widen'])

    # DETERMINE METRICS #
    anomaly_utilities.compare_events(df, params['widen'])
    metrics = anomaly_utilities.metrics(df)
    e_metrics = anomaly_utilities.event_metrics(df)

    # OUTPUT RESULTS #
    if output:
        print('Model type: ARIMA')
        print('Sensor: ' + sensor)
        anomaly_utilities.print_metrics(metrics)
        print('Event based calculations:')
        anomaly_utilities.print_metrics(e_metrics)
        print('Model report complete\n')

    # GENERATE PLOTS #
    if plots:
        plt.figure()
        anomaly_utilities.plt_results(raw=df['raw'],
                                      predictions=detections['prediction'],
                                      labels=df['labeled_event'],
                                      detections=df['detected_event'],
                                      sensor=sensor)
        plt.show()

    ARIMA_detect = ModelWorkflow()
    ARIMA_detect.df = df
    ARIMA_detect.model_fit = model_fit
    ARIMA_detect.threshold = threshold
    ARIMA_detect.detections = detections
    ARIMA_detect.metrics = metrics
    ARIMA_detect.e_metrics = e_metrics

    return ARIMA_detect
Beispiel #3
0
def LSTM_detect_multivar(sensor_array,
                         sensors,
                         params,
                         LSTM_params,
                         model_type,
                         name,
                         rules=False,
                         plots=True,
                         summary=True,
                         output=True,
                         model_output=True,
                         model_save=True):
    """
    """
    print('\nProcessing LSTM multivariate ' + str(model_type) + ' detections.')
    # RULES BASED DETECTION #
    if rules:
        size = dict()
        for snsr in sensors:
            sensor_array[snsr], r_c = rules_detect.range_check(
                sensor_array[snsr], params[snsr].max_range,
                params[snsr].min_range)
            sensor_array[snsr], p_c = rules_detect.persistence(
                sensor_array[snsr], params[snsr].persist)
            size[snsr] = rules_detect.group_size(sensor_array[snsr])
            sensor_array[snsr] = rules_detect.interpolate(sensor_array[snsr])
            print(snsr + ' maximum detected group length = ' + str(size[snsr]))
        print('Rules based detection complete.\n')
    # Create new data frames with raw and observed (after applying rules) and preliminary anomaly detections for selected sensors
    df_raw = pd.DataFrame(index=sensor_array[sensors[0]].index)
    df_observed = pd.DataFrame(index=sensor_array[sensors[0]].index)
    df_anomaly = pd.DataFrame(index=sensor_array[sensors[0]].index)
    for snsr in sensors:
        df_raw[snsr + '_raw'] = sensor_array[snsr]['raw']
        df_observed[snsr + '_obs'] = sensor_array[snsr]['observed']
        df_anomaly[snsr + '_anom'] = sensor_array[snsr]['anomaly']
    print('Raw data shape: ' + str(df_raw.shape))
    print('Observed data shape: ' + str(df_observed.shape))
    print('Initial anomalies data shape: ' + str(df_anomaly.shape))

    # MODEL CREATION #
    if model_type == 'vanilla':
        model = modeling_utilities.LSTM_multivar(df_observed, df_anomaly,
                                                 df_raw, LSTM_params, summary,
                                                 name, model_output,
                                                 model_save)
    else:
        model = modeling_utilities.LSTM_multivar_bidir(df_observed, df_anomaly,
                                                       df_raw, LSTM_params,
                                                       summary, name,
                                                       model_output,
                                                       model_save)

    print('multivariate ' + str(model_type) + ' LSTM model complete.\n')
    # Plot Metrics and Evaluate the Model
    if plots:
        plt.figure()
        plt.plot(model.history.history['loss'], label='Training Loss')
        plt.plot(model.history.history['val_loss'], label='Validation Loss')
        plt.legend()
        plt.show()

    # DETERMINE THRESHOLD AND DETECT ANOMALIES #
    ts = LSTM_params['time_steps']
    residuals = pd.DataFrame(model.test_residuals)
    residuals.columns = sensors
    predictions = pd.DataFrame(model.predictions)
    predictions.columns = sensors
    if model_type == 'vanilla':
        residuals.index = df_observed[ts:].index
        predictions.index = df_observed[ts:].index
        observed = df_observed[ts:]
    else:
        residuals.index = df_observed[ts:-ts].index
        predictions.index = df_observed[ts:-ts].index
        observed = df_observed[ts:-ts]

    threshold = dict()
    detections = dict()
    for snsr in sensors:
        threshold[snsr] = anomaly_utilities.set_dynamic_threshold(
            residuals[snsr], params[snsr]['window_sz'], params[snsr]['alpha'],
            params[snsr]['threshold_min'])
        threshold[snsr].index = residuals.index
        detections[snsr] = anomaly_utilities.detect_anomalies(
            observed[snsr + '_obs'],
            predictions[snsr],
            residuals[snsr],
            threshold[snsr],
            summary=True)
        if plots:
            plt.figure()
            anomaly_utilities.plt_threshold(residuals[snsr], threshold[snsr],
                                            sensors[snsr])
            plt.show()
    print('Threshold determination complete.')

    # WIDEN AND NUMBER ANOMALOUS EVENTS #
    all_data = dict()
    for snsr in sensors:
        if model_type == 'vanilla':
            all_data[snsr] = sensor_array[snsr].iloc[ts:]
        else:
            all_data[snsr] = sensor_array[snsr].iloc[ts:-ts]
        all_data[snsr]['labeled_event'] = anomaly_utilities.anomaly_events(
            all_data[snsr]['labeled_anomaly'], params[snsr]['widen'])
        all_data[snsr]['detected_anomaly'] = detections[snsr]['anomaly']
        all_data[snsr]['all_anomalies'] = all_data[snsr].eval(
            'detected_anomaly or anomaly')
        all_data[snsr]['detected_event'] = anomaly_utilities.anomaly_events(
            all_data[snsr]['all_anomalies'], params[snsr]['widen'])

    # DETERMINE METRICS #
    metrics = dict()
    e_metrics = dict()
    for snsr in sensors:
        anomaly_utilities.compare_events(all_data[snsr], params[snsr]['widen'])
        metrics[snsr] = anomaly_utilities.metrics(all_data[snsr])
        e_metrics[snsr] = anomaly_utilities.event_metrics(all_data[snsr])

    # OUTPUT RESULTS #
    if output:
        for snsr in sensors:
            print('\nModel type: LSTM multivariate ' + str(model_type))
            print('Sensor: ' + snsr)
            anomaly_utilities.print_metrics(metrics[snsr])
            print('Event based calculations:')
            anomaly_utilities.print_metrics(e_metrics[snsr])
        print('Model report complete\n')

    # GENERATE PLOTS #
    if plots:
        for snsr in sensors:
            plt.figure()
            anomaly_utilities.plt_results(
                raw=sensor_array[snsr]['raw'],
                predictions=detections[snsr]['prediction'],
                labels=sensor_array[snsr]['labeled_event'],
                detections=all_data[snsr]['detected_event'],
                sensor=snsr)
            plt.show()

    LSTM_detect_multivar = ModelWorkflow()
    LSTM_detect_multivar.sensor_array = sensor_array
    LSTM_detect_multivar.df_observed = df_observed
    LSTM_detect_multivar.df_raw = df_raw
    LSTM_detect_multivar.df_anomaly = df_anomaly
    LSTM_detect_multivar.model = model
    LSTM_detect_multivar.threshold = threshold
    LSTM_detect_multivar.detections = detections
    LSTM_detect_multivar.all_data = all_data
    LSTM_detect_multivar.metrics = metrics
    LSTM_detect_multivar.e_metrics = e_metrics

    return LSTM_detect_multivar
Beispiel #4
0
def LSTM_detect_univar(df,
                       sensor,
                       params,
                       LSTM_params,
                       model_type,
                       name,
                       rules=False,
                       plots=True,
                       summary=True,
                       output=True,
                       model_output=True,
                       model_save=True):
    """
    """
    print('\nProcessing LSTM univariate ' + str(model_type) + ' detections.')
    # RULES BASED DETECTION #
    if rules:
        df = rules_detect.range_check(df, params['max_range'],
                                      params['min_range'])
        df = rules_detect.persistence(df, params['persist'])
        size = rules_detect.group_size(df)
        df = rules_detect.interpolate(df)
        print(
            sensor +
            ' rules based detection complete. Maximum detected group length = '
            + str(size))

    # MODEL CREATION #
    if model_type == 'vanilla':
        model = modeling_utilities.LSTM_univar(df, LSTM_params, summary, name,
                                               model_output, model_save)
    else:
        model = modeling_utilities.LSTM_univar_bidir(df, LSTM_params, summary,
                                                     name, model_output,
                                                     model_save)
    print(sensor + ' ' + str(model_type) + ' LSTM model complete.')
    if plots:
        plt.figure()
        plt.plot(model.history.history['loss'], label='Training Loss')
        plt.plot(model.history.history['val_loss'], label='Validation Loss')
        plt.legend()
        plt.show()

    # DETERMINE THRESHOLD AND DETECT ANOMALIES #
    ts = LSTM_params['time_steps']
    threshold = anomaly_utilities.set_dynamic_threshold(
        model.test_residuals[0], params['window_sz'], params['alpha'],
        params['threshold_min'])
    if model_type == 'vanilla':
        threshold.index = df[ts:].index
    else:
        threshold.index = df[ts:-ts].index
    residuals = pd.DataFrame(model.test_residuals)
    residuals.index = threshold.index
    if plots:
        plt.figure()
        anomaly_utilities.plt_threshold(residuals, threshold, sensor)
        plt.show()
    if model_type == 'vanilla':
        observed = df[['observed']][ts:]
    else:
        observed = df[['observed']][ts:-ts]
    print('Threshold determination complete.')
    detections = anomaly_utilities.detect_anomalies(observed,
                                                    model.predictions,
                                                    model.test_residuals,
                                                    threshold,
                                                    summary=True)

    # WIDEN AND NUMBER ANOMALOUS EVENTS #
    if model_type == 'vanilla':
        df_anomalies = df.iloc[ts:]
    else:
        df_anomalies = df.iloc[ts:-ts]
    df_anomalies['labeled_event'] = anomaly_utilities.anomaly_events(
        df_anomalies['labeled_anomaly'], params['widen'])
    df_anomalies['detected_anomaly'] = detections['anomaly']
    df_anomalies['all_anomalies'] = df_anomalies.eval(
        'detected_anomaly or anomaly')
    df_anomalies['detected_event'] = anomaly_utilities.anomaly_events(
        df_anomalies['all_anomalies'], params['widen'])

    # DETERMINE METRICS #
    anomaly_utilities.compare_events(df_anomalies, params['widen'])
    metrics = anomaly_utilities.metrics(df_anomalies)
    e_metrics = anomaly_utilities.event_metrics(df_anomalies)

    # OUTPUT RESULTS #
    if output:
        print('Model type: LSTM univariate ' + str(model_type))
        print('Sensor: ' + sensor)
        anomaly_utilities.print_metrics(metrics)
        print('Event based calculations:')
        anomaly_utilities.print_metrics(e_metrics)
        print('Model report complete\n')

    # GENERATE PLOTS #
    if plots:
        plt.figure()
        anomaly_utilities.plt_results(
            raw=df['raw'],
            predictions=detections['prediction'],
            labels=df['labeled_event'],
            detections=df_anomalies['detected_event'],
            sensor=sensor)
        plt.show()

    LSTM_detect_univar = ModelWorkflow()
    LSTM_detect_univar.df = df
    LSTM_detect_univar.model = model
    LSTM_detect_univar.threshold = threshold
    LSTM_detect_univar.detections = detections
    LSTM_detect_univar.df_anomalies = df_anomalies
    LSTM_detect_univar.metrics = metrics
    LSTM_detect_univar.e_metrics = e_metrics

    return LSTM_detect_univar
Beispiel #5
0
                                                   year,
                                                   path="LRO_data/")

# RULES DETECTION PARAMETERS #
#########################################
maximum = [20, 2700, 9.5, 15]
minimum = [-2, 150, 7.5, 5]
length = [10, 10, 10, 20]

# RULES BASED ANOMALY DETECTION #
#########################################
# size = []
range_count = []
persist_count = []
for i in range(0, len(sensor_array)):
    sensor_array[sensor[i]], r_c = rules_detect.range_check(
        sensor_array[sensor[i]], maximum[i], minimum[i])
    range_count.append(r_c)
    sensor_array[sensor[i]], p_c = rules_detect.persistence(
        sensor_array[sensor[i]], length[i])
    persist_count.append(p_c)
    # s = rules_detect.group_size(sensor_array[sensor[i]])
    # size.append(s)
    sensor_array[sensor[i]] = rules_detect.add_labels(sensor_array[sensor[i]],
                                                      -9999)
    sensor_array[sensor[i]] = rules_detect.interpolate(sensor_array[sensor[i]])
    # print(str(sensor[i]) + ' maximum detected group length = ' + str(size[i]))
print('Rules based detection complete.\n')

# ANOMALY DETECTION PARAMETERS #
#########################################
window_sz = [30, 40, 20, 30]
Beispiel #6
0
#   - Use a subset of raw data that is in decent shape without NaNs, -9999 values, or data gaps.
#       df_sub = df.loc['2017-01-01 00:00':'2017-07-01 00:00']
#   - Use raw data that have been preprocessed to filter out extreme values and have drift correction applied.
#   - Either with raw or corrected data for training, use data that are not labeled as anomalous/corrected.
#   df_cor = df_cor.replace(-9999, np.NaN)

# RULES BASED DETECTION #
#########################################
# General sensor ranges for LRO data:
# Temp min: -5, max: 30
# SpCond min: 100, max: 900
# pH min: 7.5, max: 9.0
# do min: 2, max: 16
maximum = 900
minimum = 150
df = rules_detect.range_check(df, maximum, minimum)
length = 6
df = rules_detect.persistence(df, length)
size = rules_detect.group_size(df)
df = rules_detect.interpolate(df)

#########################################
# LSTM Univariate Vanilla Model #
#########################################

# MODEL CREATION #
#########################################
# scales data, reshapes data, builds and trains model, evaluates model results
time_steps = 10
samples = 5000
cells = 128
Beispiel #7
0
        "\n\n###########################################\n#Processing data for site: "
        + sites[j] + ".\n###########################################")
    df_full, sensor_array = anomaly_utilities.get_data(sites[j],
                                                       sensor,
                                                       year,
                                                       path="LRO_data/")

    # RULES BASED ANOMALY DETECTION #
    #########################################
    range_count = []
    persist_count = []
    methods_output.rules_metrics = []
    # size = []
    for i in range(0, len(sensor_array)):
        sensor_array[sensor[i]], r_c = rules_detect.range_check(
            sensor_array[sensor[i]], site_params[j][i].max_range,
            site_params[j][i].min_range)
        range_count.append(r_c)
        sensor_array[sensor[i]], p_c = rules_detect.persistence(
            sensor_array[sensor[i]], site_params[j][i].persist)
        persist_count.append(p_c)
        # s = rules_detect.group_size(sensor_array[sensor[i]])
        # size.append(s)
        sensor_array[sensor[i]] = rules_detect.add_labels(
            sensor_array[sensor[i]], -9999)
        sensor_array[sensor[i]] = rules_detect.interpolate(
            sensor_array[sensor[i]])
        # print(str(sensor[i]) + ' longest detected group = ' + str(size[i]))

        # metrics for rules based detection #
        df_rules_metrics = sensor_array[sensor[i]]
Beispiel #8
0
sensors = ['temp', 'cond', 'ph', 'do']
years = [2014, 2015, 2016, 2017, 2018, 2019]
df_full, sensor_array = anomaly_utilities.get_data(site,
                                                   sensors,
                                                   years,
                                                   path="LRO_data/")

#### Rules Based Anomaly Detection
#########################################

range_count = dict()
persist_count = dict()
rules_metrics = dict()
for snsr in sensor_array:
    sensor_array[snsr], range_count[snsr] = \
        rules_detect.range_check(sensor_array[snsr], site_params[site][snsr]['max_range'], site_params[site][snsr]['min_range'])
    sensor_array[snsr], persist_count[snsr] = \
        rules_detect.persistence(sensor_array[snsr], site_params[site][snsr]['persist'], output_grp=True)
    sensor_array[snsr] = rules_detect.add_labels(sensor_array[snsr], -9999)
    sensor_array[snsr] = rules_detect.interpolate(sensor_array[snsr])
    # s = rules_detect.group_size(sensor_array[snsr])
    # size.append(s)
    # print(str(snsr) + ' longest detected group = ' + str(size))

    # metrics for rules based detection #
    df_rules_metrics = sensor_array[snsr]
    df_rules_metrics['labeled_event'] = anomaly_utilities.anomaly_events(
        df_rules_metrics['labeled_anomaly'], wf=0)
    df_rules_metrics['detected_event'] = anomaly_utilities.anomaly_events(
        df_rules_metrics['anomaly'], wf=0)
    anomaly_utilities.compare_events(df_rules_metrics, wf=0)