Beispiel #1
0
def calibration_objectives(cali_obj, ind):
    """Evaluate the objectives of given individual.
    """
    cali_obj.ID = ind.id
    model_args = cali_obj.model.ConfigDict
    model_args.setdefault('calibration_id', -1)
    model_args['calibration_id'] = ind.id
    model_obj = MainSEIMS(args_dict=model_args)

    # Set observation data to model_obj, no need to query database
    model_obj.SetOutletObservations(ind.obs.vars, ind.obs.data)

    # Execute model
    model_obj.SetMongoClient()
    model_obj.run()
    time.sleep(0.1)  # Wait a moment in case of unpredictable file system error

    # read simulation data of the entire simulation period (include calibration and validation)
    if model_obj.ReadTimeseriesSimulations():
        ind.sim.vars = model_obj.sim_vars[:]
        ind.sim.data = deepcopy(model_obj.sim_value)
    else:
        model_obj.clean(calibration_id=ind.id)
        model_obj.UnsetMongoClient()
        return ind
    # Calculate NSE, R2, RMSE, PBIAS, and RSR, etc. of calibration period
    ind.cali.vars, ind.cali.data = model_obj.ExtractSimData(
        cali_obj.cfg.cali_stime, cali_obj.cfg.cali_etime)
    ind.cali.sim_obs_data = model_obj.ExtractSimObsData(
        cali_obj.cfg.cali_stime, cali_obj.cfg.cali_etime)

    ind.cali.objnames, \
    ind.cali.objvalues = model_obj.CalcTimeseriesStatistics(ind.cali.sim_obs_data,
                                                            cali_obj.cfg.cali_stime,
                                                            cali_obj.cfg.cali_etime)
    if ind.cali.objnames and ind.cali.objvalues:
        ind.cali.valid = True

    # Calculate NSE, R2, RMSE, PBIAS, and RSR, etc. of validation period
    if cali_obj.cfg.calc_validation:
        ind.vali.vars, ind.vali.data = model_obj.ExtractSimData(
            cali_obj.cfg.vali_stime, cali_obj.cfg.vali_etime)
        ind.vali.sim_obs_data = model_obj.ExtractSimObsData(
            cali_obj.cfg.vali_stime, cali_obj.cfg.vali_etime)

        ind.vali.objnames, \
        ind.vali.objvalues = model_obj.CalcTimeseriesStatistics(ind.vali.sim_obs_data,
                                                                cali_obj.cfg.vali_stime,
                                                                cali_obj.cfg.vali_etime)
        if ind.vali.objnames and ind.vali.objvalues:
            ind.vali.valid = True

    # Get timespan
    ind.io_time, ind.comp_time, ind.simu_time, ind.runtime = model_obj.GetTimespan(
    )

    # delete model output directory for saving storage
    model_obj.clean(calibration_id=ind.id)
    model_obj.UnsetMongoClient()
    return ind
Beispiel #2
0
class Scenario(object):
    """Base class of Scenario Analysis.

    Attributes:
        ID(integer): Unique ID in BMPScenario database -> BMP_SCENARIOS collection
        eval_timerange(float): Simulation time range, read from MongoDB, the unit is year.
        economy(float): Economical effectiveness, e.g., income minus expenses
        environment(float): Environmental effectiveness, e.g., reduction rate of soil erosion
        gene_num(integer): The number of genes of one chromosome, i.e., an individual
        gene_values(list): BMP identifiers on each location of gene. The length is gen_num.
        bmp_items(dict): BMP configuration items that can be imported to MongoDB directly.
                         The key is `bson.objectid.ObjectId`, the value is scenario item dict.
        rules(boolean): Config BMPs randomly or rule-based.
        modelrun(boolean): Has SEIMS model run successfully?
    """
    def __init__(self, cfg):
        # type: (SAConfig) -> None
        """Initialize."""
        self.ID = -1
        self.eval_timerange = 1.  # unit: year
        self.economy = 0.
        self.environment = 0.
        self.worst_econ = cfg.worst_econ
        self.worst_env = cfg.worst_env

        self.gene_num = 0
        self.gene_values = list()  # type: List[int]
        self.bmp_items = dict()

        self.rule_mtd = cfg.bmps_cfg_method
        self.bmps_info = cfg.bmps_info
        self.bmps_retain = cfg.bmps_retain
        self.eval_info = cfg.eval_info
        self.export_sce_txt = cfg.export_sce_txt
        self.export_sce_tif = cfg.export_sce_tif
        self.scenario_dir = cfg.scenario_dir  # predefined directories to store scenarios related

        # SEIMS-based model related
        self.modelcfg = cfg.model
        self.modelcfg_dict = self.modelcfg.ConfigDict
        self.model = MainSEIMS(args_dict=self.modelcfg_dict)

        self.model.SetMongoClient()
        self.model.ReadMongoDBData()

        self.scenario_db = self.model.ScenarioDBName
        self.model.ResetSimulationPeriod()  # Reset the simulation period
        # Reset the starttime and endtime of the desired outputs according to evaluation period
        if ModelCfgFields.output_id in self.eval_info:
            self.model.ResetOutputsPeriod(
                self.eval_info[ModelCfgFields.output_id], cfg.eval_stime,
                cfg.eval_etime)
        else:
            print(
                'Warning: No OUTPUTID is defined in BMPs_info. Please make sure the '
                'STARTTIME and ENDTIME of ENVEVAL are consistent with Evaluation period!'
            )

        self.model.UnsetMongoClient()  # Unset in time!

        # (Re)Calculate timerange in the unit of year
        dlt = cfg.eval_etime - cfg.eval_stime + timedelta(seconds=1)
        self.eval_timerange = (dlt.days * 86400. + dlt.seconds) / 86400. / 365.
        self.modelout_dir = None  # determined in `execute_seims_model` based on unique scenario ID
        self.modelrun = False  # indicate whether the model has been executed

    def set_unique_id(self, given_id=None):
        # type: (Optional[int]) -> int
        """Set unique ID."""
        if given_id is None:
            self.ID = next(generate_uniqueid())
        else:
            self.ID = given_id
        # Update scenario ID for self.modelcfg and self.model
        self.model.scenario_id = self.ID
        self.modelcfg.scenario_id = self.ID
        self.modelcfg_dict[
            'scenario_id'] = self.ID if self.modelcfg_dict else 0
        return self.ID

    def rule_based_config(self, method, conf_rate):
        # type: (float, str) -> None
        """Config available BMPs to each gene of the chromosome by rule-based method.

        Virtual function that should be overridden in inherited Scenario class.
        """
        pass

    def random_based_config(self, conf_rate):
        # type: (float) -> None
        """Config available BMPs to each gene of the chromosome by random-based method.

        Virtual function that should be overridden in inherited Scenario class.
        """
        pass

    def decoding(self):
        """Decoding gene_values to bmp_items

        This function should be overridden.
        """
        pass

    def export_to_mongodb(self):
        """Export current scenario to MongoDB.
        Delete the same ScenarioID if existed.
        """
        # client = ConnectMongoDB(self.modelcfg.host, self.modelcfg.port)
        # conn = client.get_conn()
        conn = MongoDBObj.client
        db = conn[self.scenario_db]
        collection = db[DBTableNames.scenarios]
        try:
            # find ScenarioID, remove if existed.
            if collection.find({
                    'ID': self.ID
            }, no_cursor_timeout=True).count():
                collection.remove({'ID': self.ID})
        except NetworkTimeout or Exception:
            # In case of unexpected raise
            pass
        for objid, bmp_item in viewitems(self.bmp_items):
            bmp_item['_id'] = ObjectId()
            collection.insert_one(bmp_item)
        # client.close()

    def export_scenario_to_txt(self):
        """Export current scenario information to text file.

        This function is better be called after `calculate_environment` and `calculate_environment`
            or in static method, e.g., `scenario_effectiveness`.
        """
        if not self.export_sce_txt:
            return
        ofile = self.scenario_dir + os.path.sep + 'Scenario_%d.txt' % self.ID
        with open(ofile, 'w', encoding='utf-8') as outfile:
            outfile.write('Scenario ID: %d\n' % self.ID)
            outfile.write('Gene number: %d\n' % self.gene_num)
            outfile.write('Gene values: %s\n' % ', '.join(
                (repr(v) for v in self.gene_values)))
            outfile.write('Scenario items:\n')
            if len(self.bmp_items) > 0:
                header = list()
                for obj, item in viewitems(self.bmp_items):
                    header = list(item.keys())
                    break
                outfile.write('\t'.join(header))
                outfile.write('\n')
                for obj, item in viewitems(self.bmp_items):
                    outfile.write('\t'.join(
                        str(v) for v in list(item.values())))
                    outfile.write('\n')
            outfile.write(
                'Effectiveness:\n\teconomy: %f\n\tenvironment: %f\n' %
                (self.economy, self.environment))

    def export_scenario_to_gtiff(self):
        """Export the areal BMPs to gtiff for further analysis.

        This function should be overridden in inherited class.
        """
        pass

    def import_from_mongodb(self, sid):
        """Import a specified Scenario (`sid`) from MongoDB.

        This function should be overridden in inherited class.
        Returns:
            True if succeed, otherwise False.
        """
        pass

    def import_from_txt(self, sid):
        """Import a specified Scenario (`sid`) from text file.

        This function should be overridden in inherited class.
        Returns:
            True if succeed, otherwise False.
        """
        pass

    def calculate_economy(self):
        """Calculate economical effectiveness, which is application specified."""
        pass

    def calculate_environment(self):
        """Calculate environment effectiveness, which is application specified."""
        pass

    def clean(self,
              scenario_id=None,
              calibration_id=None,
              delete_scenario=False,
              delete_spatial_gfs=False):
        """Clean the intermediate data."""
        # model clean
        self.model.SetMongoClient()
        self.model.clean(scenario_id=scenario_id,
                         calibration_id=calibration_id,
                         delete_scenario=delete_scenario,
                         delete_spatial_gfs=delete_spatial_gfs)
        self.model.UnsetMongoClient()

    def execute_seims_model(self):
        """Run SEIMS for evaluating environmental effectiveness.
        If execution fails, the `self.economy` and `self.environment` will be set the worst values.
        """
        scoop_log('Scenario ID: %d, running SEIMS model...' % self.ID)
        self.model.scenario_id = self.ID
        self.modelout_dir = self.model.OutputDirectory

        self.model.SetMongoClient()
        self.model.run()
        self.model.UnsetMongoClient()

        self.modelrun = True
        return self.model.run_success

    def initialize(self, input_genes=None):
        # type: (Optional[List]) -> List
        """Initialize a scenario.

        Returns:
            A list contains BMPs identifier of each gene location.
        """
        pass