Beispiel #1
0
def test(opts):
    old_opts = CfgStruct(**load_config(opts.cfg_file))

    logging.basicConfig(filename=pjoin(opts.output_dir, 'test.log'), level=logging.DEBUG)
    logger = logging.getLogger()
    logger.addHandler(logging.StreamHandler())
    logger.info('Running on %s' % get_hostname())

    with open(old_opts.in_file, 'r') as fid:
        pickle.load(fid)  # SGD data, not needed
        print 'rawDim:', old_opts.rawDim, 'inputDim:', old_opts.inputDim,\
            'layerSize:', old_opts.layerSize, 'numLayers:', old_opts.numLayers,\
            'maxUttLen:', old_opts.maxUttLen
        print 'temporalLayer:', old_opts.temporalLayer, 'outputDim:', old_opts.outputDim

        alisDir = opts.alisDir if opts.alisDir else opts.dataDir
        loader = dl.DataLoader(
            opts.dataDir, old_opts.rawDim, old_opts.inputDim, alisDir)
        nn = rnnet.NNet(old_opts.inputDim, old_opts.outputDim,
                old_opts.layerSize, old_opts.numLayers, old_opts.maxUttLen,
                temporalLayer=old_opts.temporalLayer, train=False)
        nn.initParams()
        nn.fromFile(fid)

    # FIXME Different output directory specific to test set
    out_dir = pjoin(SCAIL_DATA_DIR, 'ctc_loglikes_%s_%s' % (DATASET, DATA_SUBSET))
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    for i in range(opts.startFile, opts.numFiles + 1):
        writeLogLikes(loader, nn, i, out_dir, writePickle=True)
Beispiel #2
0
def test(opts):
    old_opts = CfgStruct(**load_config(opts.cfg_file))

    logging.basicConfig(filename=pjoin(opts.output_dir, 'test.log'),
                        level=logging.DEBUG)
    logger = logging.getLogger()
    logger.addHandler(logging.StreamHandler())
    logger.info('Running on %s' % get_hostname())

    with open(old_opts.in_file, 'r') as fid:
        pickle.load(fid)  # SGD data, not needed
        print 'rawDim:', old_opts.rawDim, 'inputDim:', old_opts.inputDim,\
            'layerSize:', old_opts.layerSize, 'numLayers:', old_opts.numLayers,\
            'maxUttLen:', old_opts.maxUttLen
        print 'temporalLayer:', old_opts.temporalLayer, 'outputDim:', old_opts.outputDim

        alisDir = opts.alisDir if opts.alisDir else opts.dataDir
        loader = dl.DataLoader(opts.dataDir, old_opts.rawDim,
                               old_opts.inputDim, alisDir)
        nn = rnnet.NNet(old_opts.inputDim,
                        old_opts.outputDim,
                        old_opts.layerSize,
                        old_opts.numLayers,
                        old_opts.maxUttLen,
                        temporalLayer=old_opts.temporalLayer,
                        train=False)
        nn.initParams()
        nn.fromFile(fid)

    # FIXME Different output directory specific to test set
    out_dir = pjoin(SCAIL_DATA_DIR,
                    'ctc_loglikes_%s_%s' % (DATASET, DATA_SUBSET))
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    for i in range(opts.startFile, opts.numFiles + 1):
        writeLogLikes(loader, nn, i, out_dir, writePickle=True)
Beispiel #3
0
def run(args=None):
    usage = "usage : %prog [options]"
    parser = optparse.OptionParser(usage=usage)

    parser.add_option('--cfg_file', dest='cfg_file', default=None,
            help='File with settings from previously trained net')

    parser.add_option(
        "--test", action="store_true", dest="test", default=False)

    # Architecture
    parser.add_option(
        "--layerSize", dest="layerSize", type="int", default=1824)
    parser.add_option("--numLayers", dest="numLayers", type="int", default=5)
    parser.add_option(
        "--temporalLayer", dest="temporalLayer", type="int", default=3)

    # Optimization
    parser.add_option("--momentum", dest="momentum", type="float",
                      default=0.95)
    parser.add_option("--epochs", dest="epochs", type="int", default=20)
    parser.add_option("--step", dest="step", type="float", default=1e-5)
    parser.add_option("--anneal", dest="anneal", type="float", default=1.3,
                      help="Sets (learning rate := learning rate / anneal) after each epoch.")
    parser.add_option('--reg', dest='reg', type='float', default=0.0,
                      help='lambda for L2 regularization of the weight matrices')

    # Data
    parser.add_option("--dataDir", dest="dataDir", type="string",
                      default=TRAIN_DATA_DIR['fbank'])
    parser.add_option('--alisDir', dest='alisDir', type='string', default=TRAIN_ALIS_DIR)
    parser.add_option('--startFile', dest='startFile', type='int', default=1, help='Start file for running testing')
    parser.add_option("--numFiles", dest="numFiles", type="int", default=384)
    parser.add_option(
        "--inputDim", dest="inputDim", type="int", default=41 * 15)
    parser.add_option("--rawDim", dest="rawDim", type="int", default=41 * 15)
    parser.add_option("--outputDim", dest="outputDim", type="int", default=35)
    parser.add_option(
        "--maxUttLen", dest="maxUttLen", type="int", default=MAX_UTT_LEN)

    # Save/Load
    parser.add_option('--save_every', dest='save_every', type='int',
            default=10, help='During training, save parameters every x number of files')

    parser.add_option('--run_desc', dest='run_desc', type='string', default='', help='Description of experiment run')

    (opts, args) = parser.parse_args(args)

    if opts.cfg_file:
        cfg = load_config(opts.cfg_file)
    else:
        cfg = vars(opts)

    # These config values should be updated every time
    cfg['host'] = get_hostname()
    cfg['git_rev'] = get_git_revision()
    cfg['pid'] = os.getpid()

    # Create experiment output directory

    if not opts.cfg_file:
        time_string = str(TimeString())
        output_dir = pjoin(RUN_DIR, time_string)
        cfg['output_dir'] = output_dir
        if not os.path.exists(output_dir):
            print 'Creating %s' % output_dir
            os.makedirs(output_dir)
        opts.cfg_file = pjoin(output_dir, 'cfg.json')
    else:
        output_dir = cfg['output_dir']

    cfg['output_dir'] = output_dir
    cfg['in_file'] = pjoin(output_dir, 'params.pk')
    cfg['out_file'] = pjoin(output_dir, 'params.pk')
    cfg['test'] = opts.test
    if opts.test:
        cfg['dataDir'] = opts.dataDir
        cfg['numFiles'] = opts.numFiles
        cfg['startFile'] = opts.startFile
    if 'reg' not in cfg:
        cfg['reg'] = 0.0

    # Logging

    logging.basicConfig(filename=pjoin(output_dir, 'train.log'), level=logging.DEBUG)
    logger = logging.getLogger()
    logger.addHandler(logging.StreamHandler())
    logger.info('Running on %s' % cfg['host'])

    # seed for debugging, turn off when stable
    np.random.seed(33)
    import random
    random.seed(33)

    if 'CUDA_DEVICE' in os.environ:
        cm.cuda_set_device(int(os.environ['CUDA_DEVICE']))
    else:
        cm.cuda_set_device(0)  # Default

    opts = CfgStruct(**cfg)

    # Testing
    if opts.test:
        test(opts)
        return

    alisDir = opts.alisDir if opts.alisDir else opts.dataDir
    loader = dl.DataLoader(opts.dataDir, opts.rawDim, opts.inputDim, alisDir)

    nn = rnnet.NNet(opts.inputDim, opts.outputDim, opts.layerSize, opts.numLayers,
                    opts.maxUttLen, temporalLayer=opts.temporalLayer, reg=opts.reg)
    nn.initParams()

    SGD = sgd.SGD(nn, opts.maxUttLen, alpha=opts.step, momentum=opts.momentum)

    # Dump config
    cfg['param_count'] = nn.paramCount()
    dump_config(cfg, opts.cfg_file)

    # Training
    epoch_file = pjoin(output_dir, 'epoch')
    if os.path.exists(epoch_file):
        start_epoch = int(open(epoch_file, 'r').read()) + 1
    else:
        start_epoch = 0

    # Load model if specified
    if os.path.exists(opts.in_file):
        with open(opts.in_file, 'r') as fid:
            SGD.fromFile(fid)
            SGD.alpha = SGD.alpha / (opts.anneal ** start_epoch)
            nn.fromFile(fid)

    num_files_file = pjoin(output_dir, 'num_files')

    for k in range(start_epoch, opts.epochs):
        perm = np.random.permutation(opts.numFiles) + 1
        loader.loadDataFileAsynch(perm[0])

        file_start = 0
        if k == start_epoch:
            if os.path.exists(num_files_file):
                file_start = int(open(num_files_file, 'r').read().strip())
                logger.info('Starting from file %d, epoch %d' % (file_start, start_epoch))
        else:
            open(num_files_file, 'w').write(str(file_start))

        for i in xrange(file_start, perm.shape[0]):
            start = time.time()
            data_dict, alis, keys, sizes = loader.getDataAsynch()
            # Prefetch
            if i + 1 < perm.shape[0]:
                loader.loadDataFileAsynch(perm[i + 1])
            SGD.run(data_dict, alis, keys, sizes)
            end = time.time()
            logger.info('File time %f' % (end - start))

            # Save parameters and cost
            if (i+1) % opts.save_every == 0:
                logger.info('Saving parameters')
                with open(opts.out_file, 'wb') as fid:
                    SGD.toFile(fid)
                    nn.toFile(fid)
                    open(num_files_file, 'w').write('%d' % (i+1))
                logger.info('Done saving parameters')
                with open(pjoin(output_dir, 'last_cost'), 'w') as fid:
                    if opts.reg > 0.0:
                        fid.write(str(SGD.expcost[-1] - SGD.regcost[-1]))
                    else:
                        fid.write(str(SGD.expcost[-1]))

        # Save epoch completed
        open(pjoin(output_dir, 'epoch'), 'w').write(str(k))

        # Save parameters for the epoch
        with open(opts.out_file + '.epoch{0:02}'.format(k), 'wb') as fid:
            SGD.toFile(fid)
            nn.toFile(fid)

        SGD.alpha = SGD.alpha / opts.anneal

    # Run now complete, touch sentinel file
    touch_file(pjoin(output_dir, 'sentinel'))
Beispiel #4
0
def run(args=None):
    usage = "usage : %prog [options]"
    parser = optparse.OptionParser(usage=usage)

    parser.add_option('--cfg_file',
                      dest='cfg_file',
                      default=None,
                      help='File with settings from previously trained net')

    parser.add_option("--test",
                      action="store_true",
                      dest="test",
                      default=False)

    # Architecture
    parser.add_option("--layerSize",
                      dest="layerSize",
                      type="int",
                      default=1824)
    parser.add_option("--numLayers", dest="numLayers", type="int", default=5)
    parser.add_option("--temporalLayer",
                      dest="temporalLayer",
                      type="int",
                      default=3)

    # Optimization
    parser.add_option("--momentum",
                      dest="momentum",
                      type="float",
                      default=0.95)
    parser.add_option("--epochs", dest="epochs", type="int", default=20)
    parser.add_option("--step", dest="step", type="float", default=1e-5)
    parser.add_option(
        "--anneal",
        dest="anneal",
        type="float",
        default=1.3,
        help="Sets (learning rate := learning rate / anneal) after each epoch."
    )
    parser.add_option(
        '--reg',
        dest='reg',
        type='float',
        default=0.0,
        help='lambda for L2 regularization of the weight matrices')

    # Data
    parser.add_option("--dataDir",
                      dest="dataDir",
                      type="string",
                      default=TRAIN_DATA_DIR['fbank'])
    parser.add_option('--alisDir',
                      dest='alisDir',
                      type='string',
                      default=TRAIN_ALIS_DIR)
    parser.add_option('--startFile',
                      dest='startFile',
                      type='int',
                      default=1,
                      help='Start file for running testing')
    parser.add_option("--numFiles", dest="numFiles", type="int", default=384)
    parser.add_option("--inputDim",
                      dest="inputDim",
                      type="int",
                      default=41 * 15)
    parser.add_option("--rawDim", dest="rawDim", type="int", default=41 * 15)
    parser.add_option("--outputDim", dest="outputDim", type="int", default=35)
    parser.add_option("--maxUttLen",
                      dest="maxUttLen",
                      type="int",
                      default=MAX_UTT_LEN)

    # Save/Load
    parser.add_option(
        '--save_every',
        dest='save_every',
        type='int',
        default=10,
        help='During training, save parameters every x number of files')

    parser.add_option('--run_desc',
                      dest='run_desc',
                      type='string',
                      default='',
                      help='Description of experiment run')

    (opts, args) = parser.parse_args(args)

    if opts.cfg_file:
        cfg = load_config(opts.cfg_file)
    else:
        cfg = vars(opts)

    # These config values should be updated every time
    cfg['host'] = get_hostname()
    cfg['git_rev'] = get_git_revision()
    cfg['pid'] = os.getpid()

    # Create experiment output directory

    if not opts.cfg_file:
        time_string = str(TimeString())
        output_dir = pjoin(RUN_DIR, time_string)
        cfg['output_dir'] = output_dir
        if not os.path.exists(output_dir):
            print 'Creating %s' % output_dir
            os.makedirs(output_dir)
        opts.cfg_file = pjoin(output_dir, 'cfg.json')
    else:
        output_dir = cfg['output_dir']

    cfg['output_dir'] = output_dir
    cfg['in_file'] = pjoin(output_dir, 'params.pk')
    cfg['out_file'] = pjoin(output_dir, 'params.pk')
    cfg['test'] = opts.test
    if opts.test:
        cfg['dataDir'] = opts.dataDir
        cfg['numFiles'] = opts.numFiles
        cfg['startFile'] = opts.startFile
    if 'reg' not in cfg:
        cfg['reg'] = 0.0

    # Logging

    logging.basicConfig(filename=pjoin(output_dir, 'train.log'),
                        level=logging.DEBUG)
    logger = logging.getLogger()
    logger.addHandler(logging.StreamHandler())
    logger.info('Running on %s' % cfg['host'])

    # seed for debugging, turn off when stable
    np.random.seed(33)
    import random
    random.seed(33)

    if 'CUDA_DEVICE' in os.environ:
        cm.cuda_set_device(int(os.environ['CUDA_DEVICE']))
    else:
        cm.cuda_set_device(0)  # Default

    opts = CfgStruct(**cfg)

    # Testing
    if opts.test:
        test(opts)
        return

    alisDir = opts.alisDir if opts.alisDir else opts.dataDir
    loader = dl.DataLoader(opts.dataDir, opts.rawDim, opts.inputDim, alisDir)

    nn = rnnet.NNet(opts.inputDim,
                    opts.outputDim,
                    opts.layerSize,
                    opts.numLayers,
                    opts.maxUttLen,
                    temporalLayer=opts.temporalLayer,
                    reg=opts.reg)
    nn.initParams()

    SGD = sgd.SGD(nn, opts.maxUttLen, alpha=opts.step, momentum=opts.momentum)

    # Dump config
    cfg['param_count'] = nn.paramCount()
    dump_config(cfg, opts.cfg_file)

    # Training
    epoch_file = pjoin(output_dir, 'epoch')
    if os.path.exists(epoch_file):
        start_epoch = int(open(epoch_file, 'r').read()) + 1
    else:
        start_epoch = 0

    # Load model if specified
    if os.path.exists(opts.in_file):
        with open(opts.in_file, 'r') as fid:
            SGD.fromFile(fid)
            SGD.alpha = SGD.alpha / (opts.anneal**start_epoch)
            nn.fromFile(fid)

    num_files_file = pjoin(output_dir, 'num_files')

    for k in range(start_epoch, opts.epochs):
        perm = np.random.permutation(opts.numFiles) + 1
        loader.loadDataFileAsynch(perm[0])

        file_start = 0
        if k == start_epoch:
            if os.path.exists(num_files_file):
                file_start = int(open(num_files_file, 'r').read().strip())
                logger.info('Starting from file %d, epoch %d' %
                            (file_start, start_epoch))
        else:
            open(num_files_file, 'w').write(str(file_start))

        for i in xrange(file_start, perm.shape[0]):
            start = time.time()
            data_dict, alis, keys, sizes = loader.getDataAsynch()
            # Prefetch
            if i + 1 < perm.shape[0]:
                loader.loadDataFileAsynch(perm[i + 1])
            SGD.run(data_dict, alis, keys, sizes)
            end = time.time()
            logger.info('File time %f' % (end - start))

            # Save parameters and cost
            if (i + 1) % opts.save_every == 0:
                logger.info('Saving parameters')
                with open(opts.out_file, 'wb') as fid:
                    SGD.toFile(fid)
                    nn.toFile(fid)
                    open(num_files_file, 'w').write('%d' % (i + 1))
                logger.info('Done saving parameters')
                with open(pjoin(output_dir, 'last_cost'), 'w') as fid:
                    if opts.reg > 0.0:
                        fid.write(str(SGD.expcost[-1] - SGD.regcost[-1]))
                    else:
                        fid.write(str(SGD.expcost[-1]))

        # Save epoch completed
        open(pjoin(output_dir, 'epoch'), 'w').write(str(k))

        # Save parameters for the epoch
        with open(opts.out_file + '.epoch{0:02}'.format(k), 'wb') as fid:
            SGD.toFile(fid)
            nn.toFile(fid)

        SGD.alpha = SGD.alpha / opts.anneal

    # Run now complete, touch sentinel file
    touch_file(pjoin(output_dir, 'sentinel'))