Beispiel #1
0
def outline(id, value):
    # print("Outline function called. Paramters: {}, {}".format(id, value))
    kernel = np.ones((value,value), np.uint8)
    img = saved_vars.get_var(id)
    morph_gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)
    saved_vars.add_var(id, morph_gradient)
    return
Beispiel #2
0
def openfile(filename, id):

    # print("Open file function called. Parameters: {}, {}".format(filename, id))
    img = cv2.imread(filename)
    if (img is None):
        raise hiphop_error("OpenImageError", "Filename does not exist.")
    saved_vars.add_var(id, img)
Beispiel #3
0
def dilate(id, value):
    # print("Dilating function called. Parameters: {}, {}".format(id, value))
    kernel = np.ones((value,value),np.uint8)
    img = saved_vars.get_var(id)
    eroded = cv2.dilate(img,kernel,iterations = 1)
    saved_vars.add_var(id, eroded)
    return
Beispiel #4
0
def impose(id, overlay, px, py):
    img = saved_vars.get_var(id)
    other_image = saved_vars.get_var(overlay)

    # Mask ranges from 0 to width / height of overlay
    mask = np.zeros(img.shape, dtype=np.bool)
    mask[:other_image.shape[0], :other_image.shape[1]] = True

    locs = np.where(mask != 0)  # Get the non-zero mask locations

    # Following conditional logic is equivalent to copyTo from other languages
    # TODO implement overflow logic to cutoff instead of wrap

    # Background is colored but overlay is grayscale
    if len(img.shape) == 3 and len(other_image.shape) != 3:
        img[locs[0] + px, locs[1] + py] = other_image[locs[0], locs[1], None]
    # Both overlay and background are grayscale
    elif (len(img.shape) == 3 and len(other_image.shape) == 3) or \
            (len(img.shape) == 1 and len(other_image.shape) == 1):
        img[locs[0] + px, locs[1] + py] = other_image[locs[0], locs[1]]
    # Otherwise, we can't do this
    else:
        raise hiphop_error("InvalidFunctionError",
                           "Incompatible input and output dimensions.")
    saved_vars.add_var(id, img, saved_vars.get_path(id))
    return
Beispiel #5
0
def grayscale(id):

    # print("Grayscale function called. Parameters: {}".format(id))

    img = saved_vars.get_var(id)
    gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    saved_vars.add_var(id, gray_image)
    return
Beispiel #6
0
def scale(id, x, y):
    img = saved_vars.get_var(id)
    width = int(img.shape[1] * x)
    height = int(img.shape[0] * y)
    dim = (width,height)
    scaled = cv2.resize(img, dim)
    saved_vars.add_var(id, scaled)
    return
Beispiel #7
0
def crop(id, widthlow, widthhigh, heightlow, heighthigh):

    img = saved_vars.get_var(id)
    height, width, channels = img.shape

    heighthalf = height/2
    widthhalf = width/2
    hl = round(heighthalf + heightlow * heighthalf)
    hh = round(heighthalf + heighthigh * heighthalf)
    wl = round(widthhalf + widthlow * widthhalf)
    wh = round(widthhalf + widthhigh * widthhalf)

    crop_img = img[hl:hh, wl:wh]
    saved_vars.add_var(id, crop_img)
    return
Beispiel #8
0
def filtercolor(id, lowR, lowG, lowB, highR, highG, highB):

    img = saved_vars.get_var(id)

    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

    # define range of color in HSV
    lower_range = np.array([lowB, lowG, lowR])
    upper_range = np.array([highB, highG, highR])

    # Threshold the HSV image to get only specified colors
    mask = cv2.inRange(hsv, lower_range, upper_range)

    # Bitwise-AND mask and original image
    res = cv2.bitwise_and(img ,img, mask=mask)
    saved_vars.add_var(id, res)
    return
Beispiel #9
0
def wave(id, direction, amplitude):
    img = saved_vars.get_var(id)
    img_output = np.zeros(img.shape, dtype=img.dtype)
    rows, cols, mask = img.shape
    if direction == "v":
        # print("Dir v")
        for i in range(rows):
            for j in range(cols):
                offset_x = int(int(amplitude) * np.sin(2 * 3.14 * i / 180))
                offset_y = 0
                if j + offset_x < rows:
                    img_output[i, j] = img[i, (j + offset_x) % cols]
                else:
                    img_output[i, j] = 0
    elif direction == "h":
        # print("Dir h")
        for i in range(rows):
            for j in range(cols):
                offset_x = 0
                offset_y = int(int(amplitude) * np.sin(2 * 3.14 * j / 150))
                if i + offset_y < rows:
                    img_output[i, j] = img[(i + offset_y) % rows, j]
                else:
                    img_output[i, j] = 0

    elif direction == "m":
        for i in range(rows):
            for j in range(cols):
                offset_x = int(int(amplitude) * np.sin(2 * 3.14 * i / 150))
                offset_y = int(int(amplitude) * np.cos(2 * 3.14 * j / 150))
                if i + offset_y < rows and j + offset_x < cols:
                    img_output[i, j] = img[(i + offset_y) % rows,
                                           (j + offset_x) % cols]
                else:
                    img_output[i, j] = 0
    else:
        raise hiphop_error("InvalidFunctionError", "Invalid parameters.")
    saved_vars.add_var(id, img_output, saved_vars.get_path(id))
    return
Beispiel #10
0
def blur(id, value):

    img = saved_vars.get_var(id)
    blurred = cv2.blur(img, (value, value))
    saved_vars.add_var(id, blurred)