def calibrate(args):
    board = runtime_util.get_device(args.model_number)
    xfer_board = runtime_util.get_device(args.xfer_db)

    logger = ModelCalibrateLogger('actcal_%s.log' % args.model_number)


    if not args.adp is None:
        adp = runtime_util.get_adp(board,args.adp,widen=args.widen)
        for cfg in adp.configs:
            blk = board.get_block(cfg.inst.block)
            if not blk.requires_calibration():
                continue

            cfg_modes = cfg.modes
            for mode in cfg_modes:
                cfg.modes = [mode]

                calibrate_block(logger, \
                                board, \
                                xfer_board, \
                                blk,cfg.inst.loc,cfg, \
                                grid_size=args.grid_size, \
                                rounds=args.rounds, \
                                samples_per_round=args.samples_per_round, \
                                max_samples=args.max_samples)

    else:
        raise Exception("unimplemented")
def make_histogram(args):
    board = runtime_util.get_device(args.model_number,layout=True)
    ph = paths.DeviceStatePathHandler(board.name, \
                                  board.model_number,make_dirs=True)

    models = {}
    for exp_model in delta_model_lib.get_all(board):
        key = (exp_model.block, exp_model.output,\
               runtime_util.get_static_cfg(exp_model.block,exp_model.config), \
               exp_model.calib_obj)
        if not key in models:
            models[key] = []
        models[key].append(exp_model)

    for key,models in models.items():
        blk,out,cfg,lbl = key
        print("%s:%s = %d models" % (blk.name,cfg,len(models)))
        png_file = ph.get_histogram_vis('merr', \
                                        blk.name, \
                                        out.name, \
                                        cfg, \
                                        lbl)
        vizlib.model_error_histogram(models, \
                                     png_file, \
                                     num_bins=10, \
                                     relative=True)

        png_file = ph.get_histogram_vis('objf', \
                                        blk.name, \
                                        out.name, \
                                        cfg, \
                                        lbl)
        vizlib.objective_fun_histogram(models, \
                                       png_file, \
                                       num_bins=10)
Beispiel #3
0
def profile_adp(args):
    board = runtime_util.get_device(args.model_number)
    calib_obj = llenums.CalibrateObjective(args.method)
    runtime = GrendelRunner()

    runtime.initialize()
    if args.missing:
        for exp_delta_model in delta_model_lib.get_all(board):
            profile_kernel(runtime,board, \
                           exp_delta_model.block, \
                           exp_delta_model.config, \
                           calib_obj, \
                           min_points=args.min_points, \
                           grid_size=args.grid_size)

    else:
        adp = runtime_util.get_adp(board, args.adp, widen=args.widen)
        for cfg in adp.configs:
            blk = board.get_block(cfg.inst.block)
            cfg_modes = cfg.modes
            for mode in cfg_modes:
                cfg.modes = [mode]
                profile_kernel(runtime,board,blk,cfg,calib_obj, \
                               args.min_points, args.max_points, \
                               args.grid_size, \
                               force=args.force, adp=adp)
Beispiel #4
0
def test_board(args):
    board = runtime_util.get_device(args.model_number, layout=True)
    for chip_id in range(0, 2):
        for tile_id in range(4):
            for slice_id in [0, 2]:
                for block in board.blocks:
                    if not block.requires_calibration():
                        continue

                    modes = list(block.modes)
                    # limit the fanout modes to just positive copies
                    if block.name == "fanout":
                        modes = list(
                            filter(lambda m: not "-" in str(m), block.modes))

                    loc = devlib.Location([chip_id, tile_id, slice_id, 0])
                    test_block(board,block,loc,modes, \
                               maximize_fit=args.maximize_fit, \
                               minimize_error=args.minimize_error, \
                               model_based=args.model_based)


    finalize_test(board, \
                  maximize_fit=args.maximize_fit, \
                  minimize_error=args.minimize_error, \
                  model_based=args.model_based)
def calibrate(args):
    board = runtime_util.get_device(args.model_number)

    exp_delta_model_lib \
        .remove_by_calibration_objective(board,llenums.CalibrateObjective.BEST)

    for models in group_by_configured_block(board):
        print("===== block =====")
        print(models[0].config)
        print("")
        for best_mdl in get_best_calibration(models):
            exp_delta_model_lib.update(board, best_mdl)
Beispiel #6
0
def characterize_adp(args):
    board = runtime_util.get_device(args.model_number, layout=True)
    runtime = GrendelRunner()
    runtime.initialize()
    if not args.adp is None:
        adp = runtime_util.get_adp(board, args.adp, widen=args.widen)
        if args.adp_locs:
            args.num_locs = 1

        for cfg in adp.configs:
            blk = board.get_block(cfg.inst.block)
            cfg_modes = cfg.modes
            for mode in cfg_modes:
                cfg.modes = [mode]
                characterize_configured_block(runtime,board,blk,cfg, \
                                              grid_size=args.grid_size, \
                                              num_locs=args.num_locs,\
                                              num_hidden_codes=args.num_hidden_codes, \
                                              adp_locs=args.adp_locs)

    else:
        if args.adp_locs or args.widen:
            raise Exception(
                "full board characterization doesn't accept adp-locs or widen parameters"
            )

        for block in board.blocks:
            if not block.requires_calibration():
                continue
                continue

            for mode in block.modes:
                loc = devlib.Location(
                    list(board.layout.instances(block.name))[0])
                cfg = BlockConfig.make(block, loc)
                cfg.modes = [mode]
                characterize_configured_block(runtime,board,block,cfg, \
                                                grid_size=args.grid_size, \
                                                num_locs=args.num_locs,\
                                                num_hidden_codes=args.num_hidden_codes, \
                                                adp_locs=False)
def execute(args):
    board = runtime_util.get_device(args.model_number)

    models_ds, datasets_ds = preprocess_board_data(board)

    for key in models_ds.keys():
        models =models_ds[key]
        datasets = datasets_ds[key]
        repr_model = get_repr_model(models)

        if repr_model is None:
            raise Exception("no representative model found. (# models=%d)" % len(models_b))

        genetic_infer_model(board, \
                            repr_model.block, \
                            repr_model.config, \
                            repr_model.output, \
                            models,datasets, \
                            num_generations=args.generations, \
                            pop_size=args.parents,  \
                            penalty=args.penalty, \
                            max_params=args.max_params, \
                            force=args.force)
def visualize(args):
    board = runtime_util.get_device(args.model_number,layout=True)
    calib_obj = llenums.CalibrateObjective(args.calib_obj) if args.calib_obj else None
    ph = paths.DeviceStatePathHandler(board.name, \
                                      board.model_number,make_dirs=True)
    if args.histogram:
        make_histogram(args)

    for delta_model in delta_model_lib.get_all(board):
        if not calib_obj is None and delta_model.calib_obj != calib_obj:
            continue

        if delta_model.complete and \
           delta_model.calib_obj != llenums.CalibrateObjective.NONE:

            print(delta_model.config)
            print(delta_model)
            if delta_model.is_integration_op:
                dataset = dataset_lib.load(board, delta_model.block, \
                                           delta_model.loc, \
                                           delta_model.output, \
                                           delta_model.config, \
                                           llenums.ProfileOpType.INTEG_INITIAL_COND)
            else:
                dataset = dataset_lib.load(board, delta_model.block, \
                                           delta_model.loc, \
                                           delta_model.output, \
                                           delta_model.config, \
                                           llenums.ProfileOpType.INPUT_OUTPUT)

            if dataset is None:
                print("-> no dataset")
                continue

            assert(isinstance(dataset, dataset_lib.ExpProfileDataset))
            png_file = ph.get_delta_vis(delta_model.block.name, \
                                        delta_model.loc.file_string(),\
                                        str(delta_model.output.name), \
                                        str(delta_model.static_cfg), \
                                        str(delta_model.hidden_cfg), \
                                        delta_model.calib_obj)
            print(png_file)
            vizlib.deviation(delta_model, \
                             dataset, \
                             png_file, \
                             baseline=vizlib.ReferenceType.MODEL_PREDICTION, \
                             num_bins=10, \
                             amplitude=args.max_error, \
                             relative=not args.absolute)

            png_file = ph.get_correctable_delta_vis(delta_model.block.name, \
                                                    delta_model.loc.file_string(), \
                                                    str(delta_model.output.name), \
                                                    str(delta_model.static_cfg), \
                                                    str(delta_model.hidden_cfg), \
                                                    delta_model.calib_obj)
            print(png_file)
            vizlib.deviation(delta_model, \
                             dataset, \
                             png_file, \
                             baseline=vizlib.ReferenceType.CORRECTABLE_MODEL_PREDICTION, \
                             num_bins=10, \
                             amplitude=args.max_error, \
                             relative=not args.absolute)

            model_file = ph.get_model_file(delta_model.block.name, \
                                           delta_model.loc.file_string(), \
                                           str(delta_model.output.name), \
                                           str(delta_model.static_cfg), \
                                           str(delta_model.hidden_cfg), \
                                           delta_model.calib_obj)

            with open(model_file,'w') as fh:
                fh.write(str(delta_model.config))
                fh.write(str(delta_model))
                fh.write("\n\n")
                fh.write(str(delta_model.spec))
def calibrate_block(logger, \
                    board,xfer_board, \
                    block,loc,config, \
                    grid_size=9, \
                    num_iters=3, \
                    samples_per_round=5, \
                    rounds=1, \
                    max_samples=20):
    logger.set_configured_block(block,loc,config.mode)


    # get board with initial code pool
    char_model = runtime_meta_util.get_model(board,block,loc,config)
    char_board = runtime_util.get_device("%s-active-cal/%s" % (board.model_number,char_model),layout=False)

    # load physical models for transfer learning. Compute the number of parameters
    phys_models = {}

    # build a calibration objective predictor with per-variable models.
    objfun,predictor = build_predictor(xfer_board,block,loc,config)
    nsamps_reqd = predictor.min_samples() + 1

    max_samples += nsamps_reqd

    # collect initial data for fitting the transfer model
    # and fit all of the initial guesses for the parameters on the transfer model
    # this should give us an initial predictor
    print("==== BOOTSTRAPPING <#samps=%d> ====" % nsamps_reqd)
    bootstrap_block(logger, \
                    char_board,block,loc,config, \
                    grid_size=grid_size, \
                    num_samples=nsamps_reqd)
    update_model(logger,char_board,block,loc,config)

    # fit all of the parameters in the predictor.
    update_predictor(predictor,char_board)

    # next, we're going to populate the initial pool of points.
    print("==== SETUP INITIAL POOL ====")
    code_pool= load_code_pool_from_database(char_board, predictor,objfun)

    if len(code_pool.pool) >= max_samples:
        write_model_to_database(logger,code_pool, board,char_board)
        return

    for rnd in range(rounds):
        #TODO: maybe put this in a loop?
        # fit all of the parameters in the predictor.
        print("==== UPDATING PREDICTOR [%d/%d] ====" % (rnd+1,rounds))
        predictor.clear()
        update_predictor(predictor,char_board)

        print("==== ADD UNLABELLED [%d/%d] ====" % (rnd+1, rounds))
        add_random_unlabelled_samples(code_pool,samples_per_round)

        print("==== QUERY UNLABELLED [%d/%d] ====" % (rnd+1,rounds))
        for pred_score, hcs in code_pool.get_unlabeled():
            print("=> codes=%s" % hcs)
            print("=> score=%s" % pred_score)
            query_hidden_codes(logger,code_pool,char_board,block,loc,config,hcs, \
                     grid_size=grid_size)

    write_model_to_database(logger,code_pool, board,char_board)
Beispiel #10
0
def calibrate_adp(args):
    board = runtime_util.get_device(args.model_number)
    adp = runtime_util.get_adp(board, args.adp, widen=args.widen)
    logger = runtime_meta_util.get_calibration_time_logger(board, 'calib')

    runtime = GrendelRunner()
    runtime.initialize()
    calib_obj = llenums.CalibrateObjective(args.method)

    for cfg in adp.configs:
        blk = board.get_block(cfg.inst.block)

        cfg_modes = cfg.modes
        for mode in cfg_modes:
            cfg.modes = [mode]
            if not blk.requires_calibration():
                continue


            if is_calibrated(board, \
                             blk, \
                             cfg.inst.loc, \
                             cfg, \
                             calib_obj):
                print("-> already calibrated")
                continue

            print("== calibrate %s (%s) ==" % (cfg.inst, calib_obj.value))
            print(cfg)
            print('----')
            # calibrate block and time it
            start = time.time()
            upd_cfg = llcmd.calibrate(runtime, \
                                    board, \
                                    blk, \
                                    cfg.inst.loc,\
                                    adp, \
                                    calib_obj=calib_obj)
            end = time.time()
            runtime_sec = end - start
            logger.log(block=blk.name,loc=cfg.inst.loc, mode=mode, \
                        calib_obj=calib_obj.value, \
                        operation='cal',runtime=runtime_sec)

            for output in blk.outputs:
                delta_model = delta_model_lib.load(board,blk, \
                                                   cfg.inst.loc,\
                                                   output, \
                                                   upd_cfg, \
                                                   calib_obj=calib_obj)
                if delta_model is None:
                    delta_model = delta_model_lib \
                                  .ExpDeltaModel(blk,cfg.inst.loc, \
                                                 output, \
                                                 upd_cfg, \
                                                 calib_obj=calib_obj)

                delta_model.calib_obj = calib_obj

                # update models and time it
                start = time.time()
                delta_model_lib.update(board, delta_model)
                end = time.time()
                runtime_sec = end - start
                logger.log(block=blk.name,loc=cfg.inst.loc, mode=mode, \
                           calib_obj=calib_obj.value, \
                           operation='fit',runtime=runtime_sec)
Beispiel #11
0
def clear(args):
    board = runtime_util.get_device(args.model_number)
    if args.profiles:
        print("-> clearing profiles")
        prof_dataset_lib \
        .remove_all(board)