def create_run(experiment, command_name, config_updates=None, named_configs=(), force=False): sorted_ingredients = gather_ingredients_topological(experiment) scaffolding = create_scaffolding(experiment, sorted_ingredients) # --------- configuration process ------------------- distribute_named_configs(scaffolding, named_configs) config_updates = config_updates or {} config_updates = convert_to_nested_dict(config_updates) root_logger, run_logger = initialize_logging(experiment, scaffolding) past_paths = set() for scaffold in scaffolding.values(): scaffold.pick_relevant_config_updates(config_updates, past_paths) past_paths.add(scaffold.path) scaffold.gather_fallbacks() scaffold.set_up_config() # update global config config = get_configuration(scaffolding) # run config hooks config_updates = scaffold.run_config_hooks(config, config_updates, command_name, run_logger) for scaffold in reversed(list(scaffolding.values())): scaffold.set_up_seed() # partially recursive config = get_configuration(scaffolding) config_modifications = get_config_modifications(scaffolding) # ---------------------------------------------------- experiment_info = experiment.get_experiment_info() host_info = get_host_info() main_function = get_command(scaffolding, command_name) pre_runs = [pr for ing in sorted_ingredients for pr in ing.pre_run_hooks] post_runs = [pr for ing in sorted_ingredients for pr in ing.post_run_hooks] run = Run(config, config_modifications, main_function, copy(experiment.observers), root_logger, run_logger, experiment_info, host_info, pre_runs, post_runs, experiment.captured_out_filter) if hasattr(main_function, 'unobserved'): run.unobserved = main_function.unobserved run.force = force for scaffold in scaffolding.values(): scaffold.finalize_initialization(run=run) return run
def create_run(experiment, command_name, config_updates=None, named_configs=(), force=False): sorted_ingredients = gather_ingredients_topological(experiment) scaffolding = create_scaffolding(experiment, sorted_ingredients) # --------- configuration process ------------------- distribute_named_configs(scaffolding, named_configs) config_updates = config_updates or {} config_updates = convert_to_nested_dict(config_updates) root_logger, run_logger = initialize_logging(experiment, scaffolding) past_paths = set() for scaffold in scaffolding.values(): scaffold.pick_relevant_config_updates(config_updates, past_paths) past_paths.add(scaffold.path) scaffold.gather_fallbacks() scaffold.set_up_config() # update global config config = get_configuration(scaffolding) # run config hooks config_updates = scaffold.run_config_hooks(config, config_updates, command_name, run_logger) for scaffold in reversed(list(scaffolding.values())): scaffold.set_up_seed() # partially recursive config = get_configuration(scaffolding) config_modifications = get_config_modifications(scaffolding) # ---------------------------------------------------- experiment_info = experiment.get_experiment_info() host_info = get_host_info() main_function = get_command(scaffolding, command_name) pre_runs = [pr for ing in sorted_ingredients for pr in ing.pre_run_hooks] post_runs = [pr for ing in sorted_ingredients for pr in ing.post_run_hooks] run = Run(config, config_modifications, main_function, experiment.observers, root_logger, run_logger, experiment_info, host_info, pre_runs, post_runs) if hasattr(main_function, 'unobserved'): run.unobserved = main_function.unobserved run.force = force for scaffold in scaffolding.values(): scaffold.finalize_initialization(run=run) return run
def create_run(experiment, command_name, config_updates=None, named_configs=(), force=False, log_level=None): sorted_ingredients = gather_ingredients_topological(experiment) scaffolding = create_scaffolding(experiment, sorted_ingredients) # get all split non-empty prefixes sorted from deepest to shallowest prefixes = sorted([s.split('.') for s in scaffolding if s != ''], reverse=True, key=lambda p: len(p)) # --------- configuration process ------------------- # Phase 1: Config updates config_updates = config_updates or {} config_updates = convert_to_nested_dict(config_updates) root_logger, run_logger = initialize_logging(experiment, scaffolding, log_level) distribute_config_updates(prefixes, scaffolding, config_updates) # Phase 2: Named Configs for ncfg in named_configs: scaff, cfg_name = get_scaffolding_and_config_name(ncfg, scaffolding) scaff.gather_fallbacks() ncfg_updates = scaff.run_named_config(cfg_name) distribute_presets(prefixes, scaffolding, ncfg_updates) for ncfg_key, value in iterate_flattened(ncfg_updates): set_by_dotted_path(config_updates, join_paths(scaff.path, ncfg_key), value) distribute_config_updates(prefixes, scaffolding, config_updates) # Phase 3: Normal config scopes for scaffold in scaffolding.values(): scaffold.gather_fallbacks() scaffold.set_up_config() # update global config config = get_configuration(scaffolding) # run config hooks config_hook_updates = scaffold.run_config_hooks( config, command_name, run_logger) recursive_update(scaffold.config, config_hook_updates) # Phase 4: finalize seeding for scaffold in reversed(list(scaffolding.values())): scaffold.set_up_seed() # partially recursive config = get_configuration(scaffolding) config_modifications = get_config_modifications(scaffolding) # ---------------------------------------------------- experiment_info = experiment.get_experiment_info() host_info = get_host_info() main_function = get_command(scaffolding, command_name) pre_runs = [pr for ing in sorted_ingredients for pr in ing.pre_run_hooks] post_runs = [pr for ing in sorted_ingredients for pr in ing.post_run_hooks] run = Run(config, config_modifications, main_function, copy(experiment.observers), root_logger, run_logger, experiment_info, host_info, pre_runs, post_runs, experiment.captured_out_filter) if hasattr(main_function, 'unobserved'): run.unobserved = main_function.unobserved run.force = force for scaffold in scaffolding.values(): scaffold.finalize_initialization(run=run) return run
def create_run(experiment, command_name, config_updates=None, named_configs=(), force=False): sorted_ingredients = gather_ingredients_topological(experiment) scaffolding = create_scaffolding(experiment, sorted_ingredients) # get all split non-empty prefixes sorted from deepest to shallowest prefixes = sorted([s.split('.') for s in scaffolding if s != ''], reverse=True, key=lambda p: len(p)) # --------- configuration process ------------------- # Phase 1: Config updates config_updates = config_updates or {} config_updates = convert_to_nested_dict(config_updates) root_logger, run_logger = initialize_logging(experiment, scaffolding) distribute_config_updates(prefixes, scaffolding, config_updates) # Phase 2: Named Configs for ncfg in named_configs: scaff, cfg_name = get_scaffolding_and_config_name(ncfg, scaffolding) scaff.gather_fallbacks() ncfg_updates = scaff.run_named_config(cfg_name) distribute_presets(prefixes, scaffolding, ncfg_updates) for ncfg_key, value in iterate_flattened(ncfg_updates): set_by_dotted_path(config_updates, join_paths(scaff.path, ncfg_key), value) distribute_config_updates(prefixes, scaffolding, config_updates) # Phase 3: Normal config scopes for scaffold in scaffolding.values(): scaffold.gather_fallbacks() scaffold.set_up_config() # update global config config = get_configuration(scaffolding) # run config hooks config_updates = scaffold.run_config_hooks(config, config_updates, command_name, run_logger) # Phase 4: finalize seeding for scaffold in reversed(list(scaffolding.values())): scaffold.set_up_seed() # partially recursive config = get_configuration(scaffolding) config_modifications = get_config_modifications(scaffolding) # ---------------------------------------------------- experiment_info = experiment.get_experiment_info() host_info = get_host_info() main_function = get_command(scaffolding, command_name) pre_runs = [pr for ing in sorted_ingredients for pr in ing.pre_run_hooks] post_runs = [pr for ing in sorted_ingredients for pr in ing.post_run_hooks] run = Run(config, config_modifications, main_function, copy(experiment.observers), root_logger, run_logger, experiment_info, host_info, pre_runs, post_runs, experiment.captured_out_filter) if hasattr(main_function, 'unobserved'): run.unobserved = main_function.unobserved run.force = force for scaffold in scaffolding.values(): scaffold.finalize_initialization(run=run) return run