def _wronskian_invdeterminant(self, weight_parity = 0) :
        r"""
        The inverse determinant of `W`, which in the considered cases is always a negative
        power of the eta function. See the thesis of Nils Skoruppa.
        
        INPUT:
        
        - ``weight_parity`` -- An integer (default: `0`).
        """
        try :
            if weight_parity % 2 == 0 :
                wronskian_invdeterminant = self._wronskian_invdeterminant_even
            else :
                wronskian_invdeterminant = self._wronskian_invdeterminant_odd
        except AttributeError :
            m = self.jacobi_index()
            if weight_parity % 2 == 0 :
                pw = (m + 1) * (2 * m + 1)
            else :
                pw = (m - 1) * (2 * m - 1)
            qexp_prec = self._qexp_precision()
            
            wronskian_invdeterminant = self.integral_power_series_ring() \
                 ( [ number_of_partitions(n) for n in xrange(qexp_prec) ] ) \
                 .add_bigoh(qexp_prec) ** pw
                 
            if weight_parity % 2 == 0 :
                self._wronskian_invdeterminant_even = wronskian_invdeterminant
            else :
                self._wronskian_invdeterminant_odd = wronskian_invdeterminant

        return wronskian_invdeterminant
Beispiel #2
0
    def _wronskian_invdeterminant(self, weight_parity=0):
        r"""
        The inverse determinant of `W`, which in the considered cases is always a negative
        power of the eta function. See the thesis of Nils Skoruppa.
        
        INPUT:
        
        - ``weight_parity`` -- An integer (default: `0`).
        """
        try:
            if weight_parity % 2 == 0:
                wronskian_invdeterminant = self._wronskian_invdeterminant_even
            else:
                wronskian_invdeterminant = self._wronskian_invdeterminant_odd
        except AttributeError:
            m = self.jacobi_index()
            if weight_parity % 2 == 0:
                pw = (m + 1) * (2 * m + 1)
            else:
                pw = (m - 1) * (2 * m - 1)
            qexp_prec = self._qexp_precision()

            wronskian_invdeterminant = self.integral_power_series_ring() \
                 ( [ number_of_partitions(n) for n in xrange(qexp_prec) ] ) \
                 .add_bigoh(qexp_prec) ** pw

            if weight_parity % 2 == 0:
                self._wronskian_invdeterminant_even = wronskian_invdeterminant
            else:
                self._wronskian_invdeterminant_odd = wronskian_invdeterminant

        return wronskian_invdeterminant
Beispiel #3
0
    def _eta_power(self):
        try:
            return self.__eta_power
        except AttributeError:
            qexp_prec = self._get_maass_form_qexp_prec()

            self.__eta_power = self.integral_power_series_ring() \
                 ([number_of_partitions(n) for n in xrange(qexp_prec)], qexp_prec)**6

            return self.__eta_power
 def _eta_power(self) :
     try :
         return self.__eta_power
     except AttributeError :
         qexp_prec = self._get_maass_form_qexp_prec()
     
         self.__eta_power = self.integral_power_series_ring() \
              ([number_of_partitions(n) for n in xrange(qexp_prec)], qexp_prec)**6
              
         return self.__eta_power
    def _itgs_iterator(self, base_ring):
        r"""
        The isomorphism type generating series is given by
        `\frac{1}{1-x}`.

        EXAMPLES::

            sage: P = species.PermutationSpecies()
            sage: g = P.isotype_generating_series()
            sage: g.coefficients(10)
            [1, 1, 2, 3, 5, 7, 11, 15, 22, 30]
        """
        from sage.combinat.partition import number_of_partitions
        for n in _integers_from(0):
            yield base_ring(number_of_partitions(n))
Beispiel #6
0
 def _itgs_iterator(self, base_ring):
     r"""
     The isomorphism type generating series is given by
     `\frac{1}{1-x}`.
     
     EXAMPLES::
     
         sage: P = species.PartitionSpecies()
         sage: g = P.isotype_generating_series()
         sage: g.coefficients(10)
         [1, 1, 2, 3, 5, 7, 11, 15, 22, 30]
     """
     from sage.combinat.partition import number_of_partitions
     for n in _integers_from(0):
         yield self._weight*base_ring(number_of_partitions(n))
Beispiel #7
0
    def _eta_factor(self):
        r"""
        The inverse determinant of `W`, which in these cases is always a negative
        power of the eta function. 
        """
        try:
            return self.__eta_factor
        except AttributeError:
            m = self.__precision.jacobi_index()
            pw = (m + 1) * (2 * m + 1)
            qexp_prec = self._qexp_precision()

            self.__eta_factor = self.integral_power_series_ring() \
                 ( [ number_of_partitions(n) for n in xrange(qexp_prec) ] ) \
                 .add_bigoh(qexp_prec) ** pw

            return self.__eta_factor
 def _eta_factor(self) :
     r"""
     The inverse determinant of `W`, which in these cases is always a negative
     power of the eta function. 
     """
     try :
         return self.__eta_factor
     except AttributeError :
         m = self.__precision.jacobi_index()
         pw = (m + 1) * (2 * m + 1)
         qexp_prec = self._qexp_precision()
         
         self.__eta_factor = self.integral_power_series_ring() \
              ( [ number_of_partitions(n) for n in xrange(qexp_prec) ] ) \
              .add_bigoh(qexp_prec) ** pw
              
         return self.__eta_factor