Beispiel #1
0
    def sigma(self, prec=10):
        """
        EXAMPLES::

            sage: E = EllipticCurve('14a')
            sage: F = E.formal_group()
            sage: F.sigma(5)
            t + 1/2*t^2 + (1/2*c + 1/3)*t^3 + (3/4*c + 3/4)*t^4 + O(t^5)
        """
        a1,a2,a3,a4,a6 = self.curve().ainvs()

        k = self.curve().base_ring()
        fl = self.log(prec)
        R = rings.PolynomialRing(k,'c'); c = R.gen()
        F = fl.reverse()

        S = rings.LaurentSeriesRing(R,'z')
        c = S(c)
        z = S.gen()
        F = F(z + O(z**prec))
        wp = self.x()(F)
        e2 = 12*c - a1**2 - 4*a2
        g = (1/z**2 - wp + e2/12).power_series()
        h = g.integral().integral()
        sigma_of_z = z.power_series() * h.exp()

        T = rings.PowerSeriesRing(R,'t')
        fl = fl(T.gen()+O(T.gen()**prec))
        sigma_of_t = sigma_of_z(fl)
        return sigma_of_t
Beispiel #2
0
    def sigma(self, prec=10):
        r"""
        Return the Weierstrass sigma function as a formal power series
        solution to the differential equation

        .. MATH::

            \frac{d^2 \log \sigma}{dz^2} = - \wp(z)

        with initial conditions `\sigma(O)=0` and `\sigma'(O)=1`,
        expressed in the variable `t=\log_E(z)` of the formal group.

        INPUT:

        -  ``prec`` - integer (default 10)

        OUTPUT: a power series with given precision

        Other solutions can be obtained by multiplication with
        a function of the form `\exp(c z^2)`.
        If the curve has good ordinary reduction at a prime `p`
        then there is a canonical choice of `c` that produces
        the canonical `p`-adic sigma function.
        To obtain that,  please use ``E.padic_sigma(p)`` instead.
        See :meth:`~sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field.padic_sigma`

        EXAMPLES::

            sage: E = EllipticCurve('14a')
            sage: F = E.formal_group()
            sage: F.sigma(5)
            t + 1/2*t^2 + 1/3*t^3 + 3/4*t^4 + O(t^5)
        """
        a1, a2, a3, a4, a6 = self.curve().ainvs()

        k = self.curve().base_ring()
        fl = self.log(prec)
        F = fl.reverse()

        S = rings.LaurentSeriesRing(k, 'z')
        z = S.gen()
        F = F(z + O(z**prec))
        wp = self.x()(F) + (a1**2 + 4 * a2) / 12
        g = (1 / z**2 - wp).power_series()
        h = g.integral().integral()
        sigma_of_z = z.power_series() * h.exp()

        T = rings.PowerSeriesRing(k, 't')
        fl = fl(T.gen() + O(T.gen()**prec))
        sigma_of_t = sigma_of_z(fl)
        return sigma_of_t