Beispiel #1
0
    def __init__(self, params, asym=False):

        (self.n, self.q, sigma, self.sigma_prime, self.k) = params

        S, x = PolynomialRing(ZZ, 'x').objgen()
        self.R = S.quotient_ring(S.ideal(x**self.n + 1))

        Sq = PolynomialRing(Zmod(self.q), 'x')
        self.Rq = Sq.quotient_ring(Sq.ideal(x**self.n + 1))

        # draw z_is uniformly from Rq and compute its inverse in Rq
        if asym:
            z = [self.Rq.random_element() for i in range(self.k)]
            self.zinv = [z_i**(-1) for z_i in z]
        else:  # or do symmetric version
            z = self.Rq.random_element()
            zinv = z**(-1)
            z, self.zinv = zip(*[(z, zinv) for i in range(self.k)])

        # set up some discrete Gaussians
        DGSL_sigma = DGSL(ZZ**self.n, sigma)
        self.D_sigma = lambda: self.Rq(list(DGSL_sigma()))

        # discrete Gaussian in ZZ^n with stddev sigma_prime, yields random level-0 encodings
        DGSL_sigmap_ZZ = DGSL(ZZ**self.n, self.sigma_prime)
        self.D_sigmap_ZZ = lambda: self.Rq(list(DGSL_sigmap_ZZ()))

        # draw g repeatedly from a Gaussian distribution of Z^n (with param sigma)
        # until g^(-1) in QQ[x]/<x^n + 1> is small (< n^2)
        Sk = PolynomialRing(QQ, 'x')
        K = Sk.quotient_ring(Sk.ideal(x**self.n + 1))
        while True:
            l = self.D_sigma()
            ginv_K = K(mod_near_poly(l, self.q))**(-1)
            ginv_size = vector(ginv_K).norm()

            if ginv_size < self.n**2:
                g = self.Rq(l)
                self.ginv = g**(-1)
                break

        # discrete Gaussian in I = <g>, yields random encodings of 0
        short_g = vector(ZZ, mod_near_poly(g, self.q))
        DGSL_sigmap_I = DGSL(short_g, self.sigma_prime)
        self.D_sigmap_I = lambda: self.Rq(list(DGSL_sigmap_I()))

        # compute zero-testing parameter p_zt
        # randomly draw h (in Rq) from a discrete Gaussian with param q^(1/2)
        self.h = self.Rq(list(DGSL(ZZ**self.n, round(sqrt(self.q)))()))

        # create p_zt
        self.p_zt = self.ginv * self.h * prod(z)
Beispiel #2
0
    def __init__(self, params, asym=False):

        (self.n, self.q, sigma, self.sigma_prime, self.k) = params

        S, x = PolynomialRing(ZZ, 'x').objgen()
        self.R = S.quotient_ring(S.ideal(x**self.n + 1))

        Sq = PolynomialRing(Zmod(self.q), 'x')
        self.Rq = Sq.quotient_ring(Sq.ideal(x**self.n + 1))

        # draw z_is uniformly from Rq and compute its inverse in Rq
        if asym:
            z = [self.Rq.random_element() for i in range(self.k)]
            self.zinv = [z_i**(-1) for z_i in z]
        else: # or do symmetric version
            z = self.Rq.random_element()
            zinv = z**(-1)
            z, self.zinv = zip(*[(z,zinv) for i in range(self.k)])

        # set up some discrete Gaussians
        DGSL_sigma = DGSL(ZZ**self.n, sigma)
        self.D_sigma = lambda: self.Rq(list(DGSL_sigma()))

        # discrete Gaussian in ZZ^n with stddev sigma_prime, yields random level-0 encodings
        DGSL_sigmap_ZZ = DGSL(ZZ**self.n, self.sigma_prime)
        self.D_sigmap_ZZ = lambda: self.Rq(list(DGSL_sigmap_ZZ()))

        # draw g repeatedly from a Gaussian distribution of Z^n (with param sigma)
        # until g^(-1) in QQ[x]/<x^n + 1> is small (< n^2)
        Sk = PolynomialRing(QQ, 'x')
        K = Sk.quotient_ring(Sk.ideal(x**self.n + 1)) 
        while True:
            l = self.D_sigma()
            ginv_K = K(mod_near_poly(l, self.q))**(-1)
            ginv_size = vector(ginv_K).norm()

            if ginv_size < self.n**2:
                g = self.Rq(l)
                self.ginv = g**(-1)
                break

        # discrete Gaussian in I = <g>, yields random encodings of 0
        short_g = vector(ZZ, mod_near_poly(g,self.q))
        DGSL_sigmap_I = DGSL(short_g, self.sigma_prime)
        self.D_sigmap_I = lambda: self.Rq(list(DGSL_sigmap_I()))

        # compute zero-testing parameter p_zt
        # randomly draw h (in Rq) from a discrete Gaussian with param q^(1/2)
        self.h = self.Rq(list(DGSL(ZZ**self.n, round(sqrt(self.q)))()))

        # create p_zt
        self.p_zt = self.ginv * self.h * prod(z)
Beispiel #3
0
    def generator_relations(self, K):
        """
        An ideal `I` in a polynomial ring `R` over `K`, such that the
        associated ring is `R / I` surjects onto the ring of modular forms
        with coefficients in `K`.
        
        INPUT:
            - `K` -- A ring.
            
        OUTPUT:
            An ideal in a polynomial ring.
        
        TESTS::
            sage: from psage.modform.fourier_expansion_framework.modularforms.modularform_testtype import *
            sage: t = ModularFormTestType_vectorvalued()
            sage: t.generator_relations(QQ)
            Ideal (g1^2 - g2, g1^3 - g3, g1^4 - g4, g1^5 - g5) of Multivariate Polynomial Ring in g1, g2, g3, g4, g5, v1, v2, v3 over Rational Field
        """
        if K.has_coerce_map_from(ZZ):
            R = PolynomialRing(
                K,
                self.non_vector_valued()._generator_names(K) +
                self._generator_names(K))
            return R.ideal().parent()(
                self.non_vector_valued().generator_relations(K))

        raise NotImplementedError
Beispiel #4
0
    def generator_relations(self, K):
        """
        An ideal `I` in a polynomial ring `R` over `K`, such that the
        associated ring is `R / I` surjects onto the ring of modular forms
        with coefficients in `K`.
        
        INPUT:
            - `K` -- A ring.
            
        OUTPUT:
            An ideal in a polynomial ring.
        
        TESTS::
            sage: from psage.modform.fourier_expansion_framework.modularforms.modularform_testtype import *
            sage: t = ModularFormTestType_scalar()
            sage: t.generator_relations(QQ)
            Ideal (g1^2 - g2, g1^3 - g3, g1^4 - g4, g1^5 - g5) of Multivariate Polynomial Ring in g1, g2, g3, g4, g5 over Rational Field
        """
        if K.has_coerce_map_from(ZZ):
            R = PolynomialRing(K, self._generator_names(K))
            g1 = R.gen(0)
            return R.ideal([
                g1**i - g
                for (i, g) in list(enumerate([None] + list(R.gens())))[2:]
            ])

        raise NotImplementedError
 def generator_relations(self, K) :
     """
     An ideal `I` in a polynomial ring `R` over `K`, such that the
     associated ring is `R / I` surjects onto the ring of modular forms
     with coefficients in `K`.
     
     INPUT:
         - `K` -- A ring.
         
     OUTPUT:
         An ideal in a polynomial ring.
     
     TESTS::
         sage: from psage.modform.fourier_expansion_framework.modularforms.modularform_testtype import *
         sage: t = ModularFormTestType_vectorvalued()
         sage: t.generator_relations(QQ)
         Ideal (g1^2 - g2, g1^3 - g3, g1^4 - g4, g1^5 - g5) of Multivariate Polynomial Ring in g1, g2, g3, g4, g5, v1, v2, v3 over Rational Field
     """
     if K.has_coerce_map_from(ZZ) :
         R = PolynomialRing(K, self.non_vector_valued()._generator_names(K) + self._generator_names(K))
         return R.ideal().parent()(self.non_vector_valued().generator_relations(K))
         
     raise NotImplementedError
 def generator_relations(self, K) :
     """
     An ideal `I` in a polynomial ring `R` over `K`, such that the
     associated ring is `R / I` surjects onto the ring of modular forms
     with coefficients in `K`.
     
     INPUT:
         - `K` -- A ring.
         
     OUTPUT:
         An ideal in a polynomial ring.
     
     TESTS::
         sage: from psage.modform.fourier_expansion_framework.modularforms.modularform_testtype import *
         sage: t = ModularFormTestType_scalar()
         sage: t.generator_relations(QQ)
         Ideal (g1^2 - g2, g1^3 - g3, g1^4 - g4, g1^5 - g5) of Multivariate Polynomial Ring in g1, g2, g3, g4, g5 over Rational Field
     """
     if K.has_coerce_map_from(ZZ) :
         R = PolynomialRing(K, self._generator_names(K))
         g1 = R.gen(0)
         return R.ideal([g1**i - g for (i,g) in list(enumerate([None] + list(R.gens())))[2:]])
         
     raise NotImplementedError
Beispiel #7
0
    def segre_embedding(self, PP=None, var='u'):
        r"""
        Return the Segre embedding of this space into the appropriate
        projective space.

        INPUT:

        -  ``PP`` -- (default: ``None``) ambient image projective space;
            this is constructed if it is not given.

        - ``var`` -- string, variable name of the image projective space, default `u` (optional).

        OUTPUT:

        Hom -- from this space to the appropriate subscheme of projective space.

        .. TODO::

            Cartesian products with more than two components.

        EXAMPLES::

            sage: X.<y0,y1,y2,y3,y4,y5> = ProductProjectiveSpaces(ZZ, [2, 2])
            sage: phi = X.segre_embedding(); phi
            Scheme morphism:
              From: Product of projective spaces P^2 x P^2 over Integer Ring
              To:   Closed subscheme of Projective Space of dimension 8 over Integer Ring defined by:
              -u5*u7 + u4*u8,
              -u5*u6 + u3*u8,
              -u4*u6 + u3*u7,
              -u2*u7 + u1*u8,
              -u2*u4 + u1*u5,
              -u2*u6 + u0*u8,
              -u1*u6 + u0*u7,
              -u2*u3 + u0*u5,
              -u1*u3 + u0*u4
              Defn: Defined by sending (y0 : y1 : y2 , y3 : y4 : y5) to
                    (y0*y3 : y0*y4 : y0*y5 : y1*y3 : y1*y4 : y1*y5 : y2*y3 : y2*y4 : y2*y5).

            ::

            sage: T = ProductProjectiveSpaces([1, 2], CC, 'z')
            sage: T.segre_embedding()
            Scheme morphism:
              From: Product of projective spaces P^1 x P^2 over Complex Field with 53 bits of precision
              To:   Closed subscheme of Projective Space of dimension 5 over Complex Field with 53 bits of precision defined by:
              -u2*u4 + u1*u5,
              -u2*u3 + u0*u5,
              -u1*u3 + u0*u4
              Defn: Defined by sending (z0 : z1 , z2 : z3 : z4) to
                    (z0*z2 : z0*z3 : z0*z4 : z1*z2 : z1*z3 : z1*z4).

            ::

            sage: T = ProductProjectiveSpaces([1, 2, 1], QQ, 'z')
            sage: T.segre_embedding()
            Scheme morphism:
              From: Product of projective spaces P^1 x P^2 x P^1 over Rational Field
              To:   Closed subscheme of Projective Space of dimension 11 over
            Rational Field defined by:
              -u9*u10 + u8*u11,
              -u7*u10 + u6*u11,
              -u7*u8 + u6*u9,
              -u5*u10 + u4*u11,
              -u5*u8 + u4*u9,
              -u5*u6 + u4*u7,
              -u5*u9 + u3*u11,
              -u5*u8 + u3*u10,
              -u5*u8 + u2*u11,
              -u4*u8 + u2*u10,
              -u3*u8 + u2*u9,
              -u3*u6 + u2*u7,
              -u3*u4 + u2*u5,
              -u5*u7 + u1*u11,
              -u5*u6 + u1*u10,
              -u3*u7 + u1*u9,
              -u3*u6 + u1*u8,
              -u5*u6 + u0*u11,
              -u4*u6 + u0*u10,
              -u3*u6 + u0*u9,
              -u2*u6 + u0*u8,
              -u1*u6 + u0*u7,
              -u1*u4 + u0*u5,
              -u1*u2 + u0*u3
              Defn: Defined by sending (z0 : z1 , z2 : z3 : z4 , z5 : z6) to
                    (z0*z2*z5 : z0*z2*z6 : z0*z3*z5 : z0*z3*z6 : z0*z4*z5 : z0*z4*z6
            : z1*z2*z5 : z1*z2*z6 : z1*z3*z5 : z1*z3*z6 : z1*z4*z5 : z1*z4*z6).
        """
        N = self._dims
        M = prod([n + 1 for n in N]) - 1
        CR = self.coordinate_ring()

        vars = list(self.coordinate_ring().variable_names()) + [
            var + str(i) for i in range(M + 1)
        ]
        R = PolynomialRing(self.base_ring(),
                           self.ngens() + M + 1,
                           vars,
                           order='lex')

        #set-up the elimination for the segre embedding
        mapping = []
        k = self.ngens()
        index = self.num_components() * [0]
        for count in range(M + 1):
            mapping.append(
                R.gen(k + count) -
                prod([CR(self[i].gen(index[i])) for i in range(len(index))]))
            for i in range(len(index) - 1, -1, -1):
                if index[i] == N[i]:
                    index[i] = 0
                else:
                    index[i] += 1
                    break  #only increment once

        #change the defining ideal of the subscheme into the variables
        I = R.ideal(list(self.defining_polynomials()) + mapping)
        J = I.groebner_basis()
        s = set(R.gens()[:self.ngens()])
        n = len(J) - 1
        L = []
        while s.isdisjoint(J[n].variables()):
            L.append(J[n])
            n = n - 1

        #create new subscheme
        if PP is None:
            PS = ProjectiveSpace(self.base_ring(), M,
                                 R.variable_names()[self.ngens():])
            Y = PS.subscheme(L)
        else:
            if PP.dimension_relative() != M:
                raise ValueError(
                    "projective Space %s must be dimension %s") % (PP, M)
            S = PP.coordinate_ring()
            psi = R.hom([0] * k + list(S.gens()), S)
            L = [psi(l) for l in L]
            Y = PP.subscheme(L)

        #create embedding for points
        mapping = []
        index = self.num_components() * [0]
        for count in range(M + 1):
            mapping.append(
                prod([CR(self[i].gen(index[i])) for i in range(len(index))]))
            for i in range(len(index) - 1, -1, -1):
                if index[i] == N[i]:
                    index[i] = 0
                else:
                    index[i] += 1
                    break  #only increment once
        phi = self.hom(mapping, Y)

        return phi
Beispiel #8
0
    def segre_embedding(self, PP=None, var='u'):
        r"""
        Return the Segre embedding of ``self`` into the appropriate
        projective space.

        INPUT:

        -  ``PP`` -- (default: ``None``) ambient image projective space;
            this is constructed if it is not given.

        - ``var`` -- string, variable name of the image projective space, default `u` (optional)

        OUTPUT:

        Hom -- from ``self`` to the appropriate subscheme of projective space

        .. TODO::

            Cartesian products with more than two components

        EXAMPLES::

            sage: X.<y0,y1,y2,y3,y4,y5> = ProductProjectiveSpaces(ZZ,[2,2])
            sage: phi = X.segre_embedding(); phi
            Scheme morphism:
              From: Product of projective spaces P^2 x P^2 over Integer Ring
              To:   Closed subscheme of Projective Space of dimension 8 over Integer Ring defined by:
              -u5*u7 + u4*u8,
              -u5*u6 + u3*u8,
              -u4*u6 + u3*u7,
              -u2*u7 + u1*u8,
              -u2*u4 + u1*u5,
              -u2*u6 + u0*u8,
              -u1*u6 + u0*u7,
              -u2*u3 + u0*u5,
              -u1*u3 + u0*u4
              Defn: Defined by sending (y0 : y1 : y2 , y3 : y4 : y5) to
                    (y0*y3 : y0*y4 : y0*y5 : y1*y3 : y1*y4 : y1*y5 : y2*y3 : y2*y4 : y2*y5).

            ::

            sage: T = ProductProjectiveSpaces([1,2],CC,'z')
            sage: T.segre_embedding()
            Scheme morphism:
              From: Product of projective spaces P^1 x P^2 over Complex Field with 53 bits of precision
              To:   Closed subscheme of Projective Space of dimension 5 over Complex Field with 53 bits of precision defined by:
              -u2*u4 + u1*u5,
              -u2*u3 + u0*u5,
              -u1*u3 + u0*u4
              Defn: Defined by sending (z0 : z1 , z2 : z3 : z4) to
                    (z0*z2 : z0*z3 : z0*z4 : z1*z2 : z1*z3 : z1*z4).
        """
        N = self._dims
        if len(N) > 2:
            raise NotImplementedError("Cannot have more than two components.")
        M = (N[0]+1)*(N[1]+1)-1

        vars = list(self.coordinate_ring().variable_names()) + [var + str(i) for i in range(M+1)]
        R = PolynomialRing(self.base_ring(),self.ngens()+M+1, vars, order='lex')

        #set-up the elimination for the segre embedding
        mapping = []
        k = self.ngens()
        for i in range(N[0]+1):
            for j in range(N[0]+1,N[0]+N[1]+2):
                mapping.append(R.gen(k)-R(self.gen(i)*self.gen(j)))
                k+=1

        #change the defining ideal of the subscheme into the variables
        I = R.ideal(list(self.defining_polynomials()) + mapping)
        J = I.groebner_basis()
        s = set(R.gens()[:self.ngens()])
        n = len(J)-1
        L = []
        while s.isdisjoint(J[n].variables()):
            L.append(J[n])
            n = n-1

        #create new subscheme
        if PP is None:
            PS = ProjectiveSpace(self.base_ring(),M,R.gens()[self.ngens():])
            Y = PS.subscheme(L)
        else:
            if PP.dimension_relative()!= M:
                raise ValueError("Projective Space %s must be dimension %s")%(PP, M)
            S = PP.coordinate_ring()
            psi = R.hom([0]*(N[0]+N[1]+2) + list(S.gens()),S)
            L = [psi(l) for l in L]
            Y = PP.subscheme(L)

        #create embedding for points
        mapping = []
        for i in range(N[0]+1):
            for j in range(N[0]+1,N[0]+N[1]+2):
                mapping.append(self.gen(i)*self.gen(j))
        phi = self.hom(mapping,Y)

        return phi
Beispiel #9
0
    def segre_embedding(self, PP=None, var='u'):
        r"""
        Return the Segre embedding of this space into the appropriate
        projective space.

        INPUT:

        -  ``PP`` -- (default: ``None``) ambient image projective space;
            this is constructed if it is not given.

        - ``var`` -- string, variable name of the image projective space, default `u` (optional).

        OUTPUT:

        Hom -- from this space to the appropriate subscheme of projective space.

        .. TODO::

            Cartesian products with more than two components.

        EXAMPLES::

            sage: X.<y0,y1,y2,y3,y4,y5> = ProductProjectiveSpaces(ZZ, [2, 2])
            sage: phi = X.segre_embedding(); phi
            Scheme morphism:
              From: Product of projective spaces P^2 x P^2 over Integer Ring
              To:   Closed subscheme of Projective Space of dimension 8 over Integer Ring defined by:
              -u5*u7 + u4*u8,
              -u5*u6 + u3*u8,
              -u4*u6 + u3*u7,
              -u2*u7 + u1*u8,
              -u2*u4 + u1*u5,
              -u2*u6 + u0*u8,
              -u1*u6 + u0*u7,
              -u2*u3 + u0*u5,
              -u1*u3 + u0*u4
              Defn: Defined by sending (y0 : y1 : y2 , y3 : y4 : y5) to
                    (y0*y3 : y0*y4 : y0*y5 : y1*y3 : y1*y4 : y1*y5 : y2*y3 : y2*y4 : y2*y5).

            ::

            sage: T = ProductProjectiveSpaces([1, 2], CC, 'z')
            sage: T.segre_embedding()
            Scheme morphism:
              From: Product of projective spaces P^1 x P^2 over Complex Field with 53 bits of precision
              To:   Closed subscheme of Projective Space of dimension 5 over Complex Field with 53 bits of precision defined by:
              -u2*u4 + u1*u5,
              -u2*u3 + u0*u5,
              -u1*u3 + u0*u4
              Defn: Defined by sending (z0 : z1 , z2 : z3 : z4) to
                    (z0*z2 : z0*z3 : z0*z4 : z1*z2 : z1*z3 : z1*z4).

            ::

            sage: T = ProductProjectiveSpaces([1, 2, 1], QQ, 'z')
            sage: T.segre_embedding()
            Scheme morphism:
              From: Product of projective spaces P^1 x P^2 x P^1 over Rational Field
              To:   Closed subscheme of Projective Space of dimension 11 over
            Rational Field defined by:
              -u9*u10 + u8*u11,
              -u7*u10 + u6*u11,
              -u7*u8 + u6*u9,
              -u5*u10 + u4*u11,
              -u5*u8 + u4*u9,
              -u5*u6 + u4*u7,
              -u5*u9 + u3*u11,
              -u5*u8 + u3*u10,
              -u5*u8 + u2*u11,
              -u4*u8 + u2*u10,
              -u3*u8 + u2*u9,
              -u3*u6 + u2*u7,
              -u3*u4 + u2*u5,
              -u5*u7 + u1*u11,
              -u5*u6 + u1*u10,
              -u3*u7 + u1*u9,
              -u3*u6 + u1*u8,
              -u5*u6 + u0*u11,
              -u4*u6 + u0*u10,
              -u3*u6 + u0*u9,
              -u2*u6 + u0*u8,
              -u1*u6 + u0*u7,
              -u1*u4 + u0*u5,
              -u1*u2 + u0*u3
              Defn: Defined by sending (z0 : z1 , z2 : z3 : z4 , z5 : z6) to
                    (z0*z2*z5 : z0*z2*z6 : z0*z3*z5 : z0*z3*z6 : z0*z4*z5 : z0*z4*z6
            : z1*z2*z5 : z1*z2*z6 : z1*z3*z5 : z1*z3*z6 : z1*z4*z5 : z1*z4*z6).
        """
        N = self._dims
        M = prod([n+1 for n in N]) - 1
        CR = self.coordinate_ring()

        vars = list(self.coordinate_ring().variable_names()) + [var + str(i) for i in range(M+1)]
        R = PolynomialRing(self.base_ring(), self.ngens()+M+1, vars, order='lex')

        #set-up the elimination for the segre embedding
        mapping = []
        k = self.ngens()
        index = self.num_components()*[0]
        for count in range(M + 1):
            mapping.append(R.gen(k+count)-prod([CR(self[i].gen(index[i])) for i in range(len(index))]))
            for i in range(len(index)-1, -1, -1):
                if index[i] == N[i]:
                    index[i] = 0
                else:
                    index[i] += 1
                    break #only increment once

        #change the defining ideal of the subscheme into the variables
        I = R.ideal(list(self.defining_polynomials()) + mapping)
        J = I.groebner_basis()
        s = set(R.gens()[:self.ngens()])
        n = len(J)-1
        L = []
        while s.isdisjoint(J[n].variables()):
            L.append(J[n])
            n = n-1

        #create new subscheme
        if PP is None:
            PS = ProjectiveSpace(self.base_ring(), M, R.variable_names()[self.ngens():])
            Y = PS.subscheme(L)
        else:
            if PP.dimension_relative() != M:
                raise ValueError("projective Space %s must be dimension %s")%(PP, M)
            S = PP.coordinate_ring()
            psi = R.hom([0]*k + list(S.gens()), S)
            L = [psi(l) for l in L]
            Y = PP.subscheme(L)

        #create embedding for points
        mapping = []
        index = self.num_components()*[0]
        for count in range(M + 1):
            mapping.append(prod([CR(self[i].gen(index[i])) for i in range(len(index))]))
            for i in range(len(index)-1, -1, -1):
                if index[i] == N[i]:
                    index[i] = 0
                else:
                    index[i] += 1
                    break #only increment once
        phi = self.hom(mapping, Y)

        return phi