Beispiel #1
0
    def __init__(self, surface, m, ring=None):

        if surface.is_mutable():
            if surface.is_finite():
                self._s=surface.copy()
            else:
                raise ValueError("Can not apply matrix to mutable infinite surface.")
        else:
            self._s=surface

        det = m.determinant()

        if det>0:
            self._det_sign=1
        elif det<0:
            self._det_sign=-1
        else:
            raise ValueError("Can not apply matrix with zero determinant to surface.")

        self._m=m

        if ring is None:
            if m.base_ring() == self._s.base_ring():
                base_ring = self._s.base_ring()
            else:
                from sage.structure.element import get_coercion_model
                cm = get_coercion_model()
                base_ring = cm.common_parent(m.base_ring(), self._s.base_ring())
        else:
            base_ring=ring

        self._P = ConvexPolygons(base_ring)

        Surface.__init__(self, base_ring, self._s.base_label(), finite=self._s.is_finite())
Beispiel #2
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: y=var('y')
            sage: bessel_I(y,x)
            bessel_I(y, x)
            sage: bessel_I(0.0, 1.0)
            1.26606587775201
            sage: bessel_I(1/2, 1)
            sqrt(2)*sinh(1)/sqrt(pi)
            sage: bessel_I(-1/2, pi)
            sqrt(2)*cosh(pi)/pi
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression) and
                (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        # special identities
        if n == Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * sinh(x)
        elif n == -Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * cosh(x)

        return None  # leaves the expression unevaluated
Beispiel #3
0
    def _eval_(self, n, m, theta, phi, **kwargs):
        r"""
        TESTS::

            sage: x, y = var('x y')
            sage: spherical_harmonic(1, 2, x, y)
            0
            sage: spherical_harmonic(1, -2, x, y)
            0
            sage: spherical_harmonic(1/2, 2, x, y)
            spherical_harmonic(1/2, 2, x, y)
            sage: spherical_harmonic(3, 2, x, y)
            15/4*sqrt(7/30)*cos(x)*e^(2*I*y)*sin(x)^2/sqrt(pi)
            sage: spherical_harmonic(3, 2, 1, 2)
            15/4*sqrt(7/30)*cos(1)*e^(4*I)*sin(1)^2/sqrt(pi)
            sage: spherical_harmonic(3 + I, 2., 1, 2)
            -0.351154337307488 - 0.415562233975369*I
        """
        from sage.structure.coerce import parent

        cc = get_coercion_model().canonical_coercion
        coerced = cc(phi, cc(theta, cc(n, m)[0])[0])[0]
        if is_inexact(coerced) and not isinstance(coerced, Expression):
            return self._evalf_(n, m, theta, phi, parent=parent(coerced))
        elif n in ZZ and m in ZZ and n > -1:
            if abs(m) > n:
                return ZZ(0)
            return meval("spherical_harmonic({},{},{},{})".format(ZZ(n), ZZ(m), maxima(theta), maxima(phi)))
        return
Beispiel #4
0
    def _evalf_(self, n, x, parent=None, algorithm=None):
        """
        EXAMPLES::

            sage: bessel_J(0.0, 1.0)
            0.765197686557967
            sage: bessel_J(0, 1).n(digits=20)
            0.76519768655796655145
            sage: bessel_J(0.5, 1.5)
            0.649838074753747

        Check for correct rounding (:trac:`17122`)::

            sage: R = RealField(113)
            sage: a = R("8.935761195587725798762818805462843676e-01")
            sage: aa = RealField(200)(a)
            sage: for n in [-10..10]:
            ....:     b = bessel_J(R(n), a)
            ....:     bb = R(bessel_J(n, aa))
            ....:     if b != bb:
            ....:         print n, b-bb
        """
        if parent is not None:
            x = parent(x)

        try:
            return x.jn(Integer(n))
        except Exception:
            pass

        n, x = get_coercion_model().canonical_coercion(n, x)
        import mpmath
        return mpmath_utils.call(mpmath.besselj, n, x, parent=parent)
Beispiel #5
0
    def weight_lattice_realization(self):
        r"""
        Return the weight lattice realization used to express weights.

        The weight lattice realization is the common parent which all
        weight lattice realizations of the crystals of ``self`` coerce
        into.

        EXAMPLES::

            sage: LaZ = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights()
            sage: LaQ = RootSystem(['A',2,1]).weight_space(extended=True).fundamental_weights()
            sage: B = crystals.LSPaths(LaQ[1])
            sage: B.weight_lattice_realization()
            Extended weight space over the Rational Field of the Root system of type ['A', 2, 1]
            sage: C = crystals.AlcovePaths(LaZ[1])
            sage: C.weight_lattice_realization()
            Extended weight lattice of the Root system of type ['A', 2, 1]
            sage: D = crystals.DirectSum([B,C])
            sage: D.weight_lattice_realization()
            Extended weight space over the Rational Field of the Root system of type ['A', 2, 1]
        """
        cm = get_coercion_model()
        return cm.common_parent(*[crystal.weight_lattice_realization()
                                  for crystal in self.crystals])
Beispiel #6
0
        def __mul__(self, right):
            r"""
            Product of two elements

            INPUT:

            - ``self``, ``right`` -- two elements

            This calls the `_mul_` method of ``self``, if it is
            available and the two elements have the same parent.

            Otherwise, the job is delegated to the coercion model.

            Do not override; instead implement a ``_mul_`` method in the
            element class or a ``product`` method in the parent class.

            EXAMPLES::

                sage: S = Semigroups().example("free")
                sage: x = S('a'); y = S('b')
                sage: x * y
                'ab'
            """
            if have_same_parent(self, right) and hasattr(self, "_mul_"):
                return self._mul_(right)
            from sage.structure.element import get_coercion_model
            import operator
            return get_coercion_model().bin_op(self, right, operator.mul)
Beispiel #7
0
    def _eval_(self, n, m, theta, phi, **kwargs):
        r"""
        TESTS::

            sage: x, y = var('x y')
            sage: spherical_harmonic(1, 2, x, y)
            0
            sage: spherical_harmonic(1, -2, x, y)
            0
            sage: spherical_harmonic(1/2, 2, x, y)
            spherical_harmonic(1/2, 2, x, y)
            sage: spherical_harmonic(3, 2, x, y)
            15/4*sqrt(7/30)*cos(x)*e^(2*I*y)*sin(x)^2/sqrt(pi)
            sage: spherical_harmonic(3, 2, 1, 2)
            15/4*sqrt(7/30)*cos(1)*e^(4*I)*sin(1)^2/sqrt(pi)
            sage: spherical_harmonic(3 + I, 2., 1, 2)
            -0.351154337307488 - 0.415562233975369*I
        """
        from sage.structure.coerce import parent
        cc = get_coercion_model().canonical_coercion
        coerced = cc(phi, cc(theta, cc(n, m)[0])[0])[0]
        if is_inexact(coerced) and not isinstance(coerced, Expression):
            return self._evalf_(n, m, theta, phi, parent=parent(coerced))
        elif n in ZZ and m in ZZ and n > -1:
            if abs(m) > n:
                return ZZ(0)
            return meval("spherical_harmonic({},{},{},{})".format(
                ZZ(n), ZZ(m), maxima(theta), maxima(phi)))
        return
Beispiel #8
0
    def _evalf_try_(self, a, b, z):
        """
        Call :meth:`_evalf_` if one of the arguments is numerical and none
        of the arguments are symbolic.

        OUTPUT:

        - ``None`` if we didn't succeed to call :meth:`_evalf_` or if
          the input wasn't suitable for it.

        - otherwise, a numerical value for the function.

        EXAMPLES::

            sage: hypergeometric._evalf_try_((1.0,), (2.0,), 3.0)
            6.36184564106256
            sage: hypergeometric._evalf_try_((1.0, 1), (), 3.0)
            -0.0377593153441588 + 0.750349833788561*I
            sage: hypergeometric._evalf_try_((1, 1), (), 3)    # exact input
            sage: hypergeometric._evalf_try_((x,), (), 1.0)    # symbolic
            sage: hypergeometric._evalf_try_(1.0, 2.0, 3.0)    # not tuples
        """
        # We need to override this for hypergeometric functions since
        # the first 2 arguments are tuples and the generic _evalf_try_
        # cannot handle that.
        if not isinstance(a,tuple) or not isinstance(b,tuple):
            return None
        args = list(a) + list(b) + [z]
        if any(self._is_numerical(x) for x in args):
            if not any(isinstance(x, Expression) for x in args):
                p = get_coercion_model().common_parent(*args)
                return self._evalf_(a, b, z, parent=p)
Beispiel #9
0
    def __eq__(self, other):
        """
        Check equality.

        TESTS::

            sage: R.<x,y,z> =  QQ[]
            sage: W = DifferentialWeylAlgebra(R)
            sage: dx,dy,dz = W.differentials()
            sage: dy*(x^3-y*z)*dx == -z*dx + x^3*dx*dy - y*z*dx*dy
            True
            sage: W.zero() == 0
            True
            sage: W.one() == 1
            True
            sage: x == 1
            False
            sage: x + 1 == 1
            False
            sage: W(x^3 - y*z) == x^3 - y*z
            True
        """
        if have_same_parent(self, other):
            return self.__monomials == other.__monomials
        try:
            return get_coercion_model().bin_op(self, other, operator.eq)
        except TypeError:
            return False
Beispiel #10
0
        def __mul__(self, right):
            r"""
            Product of two elements

            INPUT:

            - ``self``, ``right`` -- two elements

            This calls the `_mul_` method of ``self``, if it is
            available and the two elements have the same parent.

            Otherwise, the job is delegated to the coercion model.

            Do not override; instead implement a ``_mul_`` method in the
            element class or a ``product`` method in the parent class.

            EXAMPLES::

                sage: S = Semigroups().example("free")
                sage: x = S('a'); y = S('b')
                sage: x * y
                'ab'
            """
            if have_same_parent(self, right) and hasattr(self, "_mul_"):
                return self._mul_(right)
            from sage.structure.element import get_coercion_model
            import operator
            return get_coercion_model().bin_op(self, right, operator.mul)
Beispiel #11
0
    def direct_sum(self, other):
        """
        Return the direct sum.

        INPUT:

        - ``other`` -- a filtered vector space.

        OUTPUT:

        The direct sum as a filtered vector space.

        EXAMPLES::

            sage: V = FilteredVectorSpace(2, 0)
            sage: W = FilteredVectorSpace({0:[(1,-1),(2,1)], 1:[(1,1)]})
            sage: V.direct_sum(W)
            QQ^4 >= QQ^1 >= 0
            sage: V + W    # syntactic sugar
            QQ^4 >= QQ^1 >= 0
            sage: V + V == FilteredVectorSpace(4, 0)
            True

            sage: W = FilteredVectorSpace([(1,-1),(2,1)], {1:[0,1], 2:[1]})
            sage: V + W
            QQ^4 >= QQ^2 >= QQ^1 >= 0

        A suitable base ring is chosen if they do not match::

            sage: v = [(1,0), (0,1)]
            sage: F1 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=QQ)
            sage: F2 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=RDF)
            sage: F1 + F2
            RDF^4 >= RDF^2 >= 0
        """
        from sage.structure.element import get_coercion_model
        base_ring = get_coercion_model().common_parent(self.base_ring(),
                                                       other.base_ring())
        # construct the generators
        self_gens, self_filt = self.presentation()
        other_gens, other_filt = other.presentation()
        generators = \
            [ list(v) + [base_ring.zero()]*other.dimension() for v in self_gens  ] + \
            [ [base_ring.zero()]*self.dimension() + list(v)  for v in other_gens ]

        # construct the filtration dictionary
        def join_indices(self_indices, other_indices):
            self_indices = tuple(self_indices)
            other_indices = tuple(i + len(self_gens) for i in other_indices)
            return self_indices + other_indices

        filtration = dict()
        self_indices = set()
        other_indices = set()
        for deg in reversed(uniq(self_filt.keys() + other_filt.keys())):
            self_indices.update(self_filt.get(deg, []))
            other_indices.update(other_filt.get(deg, []))
            gens = join_indices(self_indices, other_indices)
            filtration[deg] = gens
        return FilteredVectorSpace(generators, filtration, base_ring=base_ring)
    def __init__(self, surface, m, ring=None):

        if surface.is_mutable():
            if surface.is_finite():
                self._s=surface.copy()
            else:
                raise ValueError("Can not apply matrix to mutable infinite surface.")
        else:
            self._s=surface

        det = m.determinant()

        if det>0:
            self._det_sign=1
        elif det<0:
            self._det_sign=-1
        else:
            raise ValueError("Can not apply matrix with zero determinant to surface.")

        self._m=m

        if ring is None:
            if m.base_ring() == self._s.base_ring():
                base_ring = self._s.base_ring()
            else:
                from sage.structure.element import get_coercion_model
                cm = get_coercion_model()
                base_ring = cm.common_parent(m.base_ring(), self._s.base_ring())
        else:
            base_ring=ring

        self._P=Polygons(base_ring)

        Surface.__init__(self, base_ring, self._s.base_label(), finite=self._s.is_finite())
Beispiel #13
0
    def tensor_product(self, other):
        r"""
        Return the graded tensor product.

        INPUT:

        - ``other`` -- a filtered vector space.

        OUTPUT:

        The graded tensor product, that is, the tensor product of a
        generator of degree `d_1` with a generator in degree `d_2` has
        degree `d_1 + d_2`.

        EXAMPLES::

            sage: F1 = FilteredVectorSpace(1, 1)
            sage: F2 = FilteredVectorSpace(1, 2)
            sage: F1.tensor_product(F2)
            QQ^1 >= 0
            sage: F1 * F2
            QQ^1 >= 0

            sage: F1.min_degree()
            1
            sage: F2.min_degree()
            2
            sage: (F1*F2).min_degree()
            3

        A suitable base ring is chosen if they do not match::

            sage: v = [(1,0), (0,1)]
            sage: F1 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=QQ)
            sage: F2 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=RDF)
            sage: F1 * F2
            RDF^4 >= RDF^3 >= RDF^1 >= 0
        """
        V = self
        W = other
        from sage.structure.element import get_coercion_model
        base_ring = get_coercion_model().common_parent(V.base_ring(), W.base_ring())
        from sage.modules.tensor_operations import VectorCollection, TensorOperation
        V_generators, V_indices = V.presentation()
        W_generators, W_indices = W.presentation()
        V_coll = VectorCollection(V_generators, base_ring, V.dimension())
        W_coll = VectorCollection(W_generators, base_ring, W.dimension())
        T = TensorOperation([V_coll, W_coll], 'product')

        filtration = dict()
        for V_deg in V.support():
            for W_deg in W.support():
                deg = V_deg + W_deg
                indices = filtration.get(deg, set())
                for i in V_indices[V_deg]:
                    for j in W_indices[W_deg]:
                        i_tensor_j = T.index_map(i, j)
                        indices.add(i_tensor_j)
                filtration[deg] = indices
        return FilteredVectorSpace(T.vectors(), filtration, base_ring=base_ring)
Beispiel #14
0
    def __add__(self, other):
        """
        Return the sum of two subgroups.

        EXAMPLES::

            sage: C = J0(22).cuspidal_subgroup()
            sage: C.gens()
            [[(1/5, 1/5, 4/5, 0)], [(0, 0, 0, 1/5)]]
            sage: A = C.subgroup([C.0]); B = C.subgroup([C.1])
            sage: A + B == C
            True
        """
        if not isinstance(other, FiniteSubgroup):
            raise TypeError("only addition of two finite subgroups is defined")
        A = self.abelian_variety()
        B = other.abelian_variety()
        if not A.in_same_ambient_variety(B):
            raise ValueError(
                "self and other must be in the same ambient Jacobian")
        K = get_coercion_model().common_parent(self.field_of_definition(),
                                               other.field_of_definition())
        lattice = self.lattice() + other.lattice()
        if A != B:
            lattice += C.lattice()

        return FiniteSubgroup_lattice(self.abelian_variety(),
                                      lattice,
                                      field_of_definition=K)
Beispiel #15
0
    def tensor_product(self, other):
        r"""
        Return the graded tensor product.

        INPUT:

        - ``other`` -- a filtered vector space.

        OUTPUT:

        The graded tensor product, that is, the tensor product of a
        generator of degree `d_1` with a generator in degree `d_2` has
        degree `d_1 + d_2`.

        EXAMPLES::

            sage: F1 = FilteredVectorSpace(1, 1)
            sage: F2 = FilteredVectorSpace(1, 2)
            sage: F1.tensor_product(F2)
            QQ^1 >= 0
            sage: F1 * F2
            QQ^1 >= 0

            sage: F1.min_degree()
            1
            sage: F2.min_degree()
            2
            sage: (F1*F2).min_degree()
            3

        A suitable base ring is chosen if they do not match::

            sage: v = [(1,0), (0,1)]
            sage: F1 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=QQ)
            sage: F2 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=RDF)
            sage: F1 * F2
            RDF^4 >= RDF^3 >= RDF^1 >= 0
        """
        V = self
        W = other
        from sage.structure.element import get_coercion_model
        base_ring = get_coercion_model().common_parent(V.base_ring(), W.base_ring())
        from sage.modules.tensor_operations import VectorCollection, TensorOperation
        V_generators, V_indices = V.presentation()
        W_generators, W_indices = W.presentation()
        V_coll = VectorCollection(V_generators, base_ring, V.dimension())
        W_coll = VectorCollection(W_generators, base_ring, W.dimension())
        T = TensorOperation([V_coll, W_coll], 'product')

        filtration = dict()
        for V_deg in V.support():
            for W_deg in W.support():
                deg = V_deg + W_deg
                indices = filtration.get(deg, set())
                for i in V_indices[V_deg]:
                    for j in W_indices[W_deg]:
                        i_tensor_j = T.index_map(i, j)
                        indices.add(i_tensor_j)
                filtration[deg] = indices
        return FilteredVectorSpace(T.vectors(), filtration, base_ring=base_ring)
Beispiel #16
0
    def _evalf_(self, n, x, parent=None, algorithm=None):
        """
        EXAMPLES::

            sage: bessel_J(0.0, 1.0)
            0.765197686557967
            sage: bessel_J(0, 1).n(digits=20)
            0.76519768655796655145
            sage: bessel_J(0.5, 1.5)
            0.649838074753747

        Check for correct rounding (:trac:`17122`)::

            sage: R = RealField(113)
            sage: a = R("8.935761195587725798762818805462843676e-01")
            sage: aa = RealField(200)(a)
            sage: for n in [-10..10]:
            ....:     b = bessel_J(R(n), a)
            ....:     bb = R(bessel_J(n, aa))
            ....:     if b != bb:
            ....:         print n, b-bb
        """
        if parent is not None:
            x = parent(x)

        try:
            return x.jn(Integer(n))
        except Exception:
            pass

        n, x = get_coercion_model().canonical_coercion(n, x)
        import mpmath
        return mpmath_utils.call(mpmath.besselj, n, x, parent=parent)
Beispiel #17
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: y=var('y')
            sage: bessel_I(y,x)
            bessel_I(y, x)
            sage: bessel_I(0.0, 1.0)
            1.26606587775201
            sage: bessel_I(1/2, 1)
            sqrt(2)*sinh(1)/sqrt(pi)
            sage: bessel_I(-1/2, pi)
            sqrt(2)*cosh(pi)/pi
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression)
                and (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        # special identities
        if n == Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * sinh(x)
        elif n == -Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * cosh(x)

        return None  # leaves the expression unevaluated
Beispiel #18
0
    def _evalf_(self, n, x, parent=None, algorithm=None):
        """
        EXAMPLES::

            sage: bessel_Y(0.5, 1.5)
            -0.0460831658930974
            sage: bessel_Y(1.0+2*I, 3.0+4*I)
            0.699410324467538 + 0.228917940896421*I
            sage: bessel_Y(0, 1).n(256)
            0.08825696421567695798292676602351516282781752309067554671104384761199978932351

        Check for correct rounding (:trac:`17122`)::

            sage: R = RealField(113)
            sage: a = R("8.935761195587725798762818805462843676e-01")
            sage: aa = RealField(200)(a)
            sage: for n in [-10..10]:
            ....:     b = bessel_Y(R(n), a)
            ....:     bb = R(bessel_Y(n, aa))
            ....:     if b != bb:
            ....:         print n, b-bb
        """
        if parent is not None:
            x = parent(x)

        try:
            return x.yn(Integer(n))
        except Exception:
            pass

        n, x = get_coercion_model().canonical_coercion(n, x)
        import mpmath
        return mpmath_utils.call(mpmath.bessely, n, x, parent=parent)
Beispiel #19
0
    def _evalf_(self, n, x, parent=None, algorithm=None):
        """
        EXAMPLES::

            sage: bessel_Y(0.5, 1.5)
            -0.0460831658930974
            sage: bessel_Y(1.0+2*I, 3.0+4*I)
            0.699410324467538 + 0.228917940896421*I
            sage: bessel_Y(0, 1).n(256)
            0.08825696421567695798292676602351516282781752309067554671104384761199978932351

        Check for correct rounding (:trac:`17122`)::

            sage: R = RealField(113)
            sage: a = R("8.935761195587725798762818805462843676e-01")
            sage: aa = RealField(200)(a)
            sage: for n in [-10..10]:
            ....:     b = bessel_Y(R(n), a)
            ....:     bb = R(bessel_Y(n, aa))
            ....:     if b != bb:
            ....:         print n, b-bb
        """
        if parent is not None:
            x = parent(x)

        try:
            return x.yn(Integer(n))
        except Exception:
            pass

        n, x = get_coercion_model().canonical_coercion(n, x)
        import mpmath
        return mpmath_utils.call(mpmath.bessely, n, x, parent=parent)
Beispiel #20
0
    def _evalf_try_(self, a, b, z):
        """
        Call :meth:`_evalf_` if one of the arguments is numerical and none
        of the arguments are symbolic.

        OUTPUT:

        - ``None`` if we didn't succeed to call :meth:`_evalf_` or if
          the input wasn't suitable for it.

        - otherwise, a numerical value for the function.

        EXAMPLES::

            sage: hypergeometric._evalf_try_((1.0,), (2.0,), 3.0)
            6.36184564106256
            sage: hypergeometric._evalf_try_((1.0, 1), (), 3.0)
            -0.0377593153441588 + 0.750349833788561*I
            sage: hypergeometric._evalf_try_((1, 1), (), 3)    # exact input
            sage: hypergeometric._evalf_try_((x,), (), 1.0)    # symbolic
            sage: hypergeometric._evalf_try_(1.0, 2.0, 3.0)    # not tuples
        """
        # We need to override this for hypergeometric functions since
        # the first 2 arguments are tuples and the generic _evalf_try_
        # cannot handle that.
        if not isinstance(a, tuple) or not isinstance(b, tuple):
            return None
        args = list(a) + list(b) + [z]
        if any(self._is_numerical(x) for x in args):
            if not any(isinstance(x, Expression) for x in args):
                p = get_coercion_model().common_parent(*args)
                return self._evalf_(a, b, z, parent=p)
    def __add__(self, other):
        """
        Return the sum of two subgroups.

        EXAMPLES::

            sage: C = J0(22).cuspidal_subgroup()
            sage: C.gens()
            [[(1/5, 1/5, 4/5, 0)], [(0, 0, 0, 1/5)]]
            sage: A = C.subgroup([C.0]); B = C.subgroup([C.1])
            sage: A + B == C
            True
        """
        if not isinstance(other, FiniteSubgroup):
            raise TypeError("only addition of two finite subgroups is defined")
        A = self.abelian_variety()
        B = other.abelian_variety()
        if not A.in_same_ambient_variety(B):
            raise ValueError("self and other must be in the same ambient Jacobian")
        K = get_coercion_model().common_parent(self.field_of_definition(), other.field_of_definition())
        lattice = self.lattice() + other.lattice()
        if A != B:
            lattice += C.lattice()

        return FiniteSubgroup_lattice(self.abelian_variety(), lattice, field_of_definition=K)
Beispiel #22
0
    def weight_lattice_realization(self):
        r"""
        Return the weight lattice realization used to express weights.

        The weight lattice realization is the common parent which all
        weight lattice realizations of the crystals of ``self`` coerce
        into.

        EXAMPLES::

            sage: LaZ = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights()
            sage: LaQ = RootSystem(['A',2,1]).weight_space(extended=True).fundamental_weights()
            sage: B = crystals.LSPaths(LaQ[1])
            sage: B.weight_lattice_realization()
            Extended weight space over the Rational Field of the Root system of type ['A', 2, 1]
            sage: C = crystals.AlcovePaths(LaZ[1])
            sage: C.weight_lattice_realization()
            Extended weight lattice of the Root system of type ['A', 2, 1]
            sage: D = crystals.DirectSum([B,C])
            sage: D.weight_lattice_realization()
            Extended weight space over the Rational Field of the Root system of type ['A', 2, 1]
        """
        cm = get_coercion_model()
        return cm.common_parent(*[
            crystal.weight_lattice_realization() for crystal in self.crystals
        ])
Beispiel #23
0
    def apply_matrix(self, m, in_place=True, mapping=False):
        r"""
        Carry out the GL(2,R) action of m on this surface and return the result.
        
        If in_place=True, then this is done in place and changes the surface. 
        This can only be carried out if the surface is finite and mutable.
        
        If mapping=True, then we return a GL2RMapping between this surface and its image. 
        In this case in_place must be False.
        
        If in_place=False, then a copy is made before the deformation.
        """
        if mapping == True:
            assert in_place == False, "Can not modify in place and return a mapping."
            return GL2RMapping(self, m)
        if not in_place:
            if self.is_finite():
                from sage.structure.element import get_coercion_model
                cm = get_coercion_model()
                field = cm.common_parent(self.base_ring(), m.base_ring())
                s = self.copy(mutable=True, new_field=field)
                return s.apply_matrix(m)
            else:
                return m * self
        else:
            # Make sure m is in the right state
            from sage.matrix.constructor import Matrix
            m = Matrix(self.base_ring(), 2, 2, m)
            assert m.det() != self.base_ring().zero(
            ), "Can not deform by degenerate matrix."
            assert self.is_finite(
            ), "In place GL(2,R) action only works for finite surfaces."
            us = self.underlying_surface()
            assert us.is_mutable(
            ), "In place changes only work for mutable surfaces."
            for label in self.label_iterator():
                us.change_polygon(label, m * self.polygon(label))
            if m.det() < self.base_ring().zero():
                # Polygons were all reversed orientation. Need to redo gluings.

                # First pass record new gluings in a dictionary.
                new_glue = {}
                seen_labels = set()
                for p1 in self.label_iterator():
                    n1 = self.polygon(p1).num_edges()
                    for e1 in range(n1):
                        p2, e2 = self.opposite_edge(p1, e1)
                        n2 = self.polygon(p2).num_edges()
                        if p2 in seen_labels:
                            pass
                        elif p1 == p2 and e1 > e2:
                            pass
                        else:
                            new_glue[(p1, n1 - 1 - e1)] = (p2, n2 - 1 - e2)
                    seen_labels.add(p1)
                # Second pass: reassign gluings
                for (p1, e1), (p2, e2) in iteritems(new_glue):
                    us.change_edge_gluing(p1, e1, p2, e2)
            return self
Beispiel #24
0
            def __truediv__(left, right):
                """
                Return the result of the division of ``left`` by ``right``, if possible.

                This top-level implementation delegates the work to
                the ``_div_`` method if ``left`` and ``right`` have
                the same parent and to coercion otherwise. See the
                extensive documentation at the top of
                :ref:`sage.structure.element`.

                .. SEEALSO:: :meth:`_div_`

                EXAMPLES::

                    sage: G = FreeGroup(2)
                    sage: x0, x1 = G.group_generators()
                    sage: c1 = cartesian_product([x0, x1])
                    sage: c2 = cartesian_product([x1, x0])
                    sage: c1.__div__(c2)
                    (x0*x1^-1, x1*x0^-1)
                    sage: c1 / c2
                    (x0*x1^-1, x1*x0^-1)

                Division supports coercion::

                    sage: C = cartesian_product([G, G])
                    sage: H = Hom(G, C)
                    sage: phi = H(lambda g: cartesian_product([g, g]))
                    sage: phi.register_as_coercion()
                    sage: x1 / c1
                    (x1*x0^-1, 1)
                    sage: c1 / x1
                    (x0*x1^-1, 1)

                Depending on how the division itself is implemented in
                :meth:`_div_`, division may fail even when ``right``
                actually divides ``left``::

                    sage: x = cartesian_product([2, 1])
                    sage: y = cartesian_product([1, 1])
                    sage: x / y
                    (2, 1)
                    sage: x / x
                    Traceback (most recent call last):
                    ...
                    TypeError: no conversion of this rational to integer

                TESTS::

                    sage: c1.__div__.__module__
                    'sage.categories.magmas'
                """
                from sage.structure.element import have_same_parent
                if have_same_parent(left, right):
                    return left._div_(right)
                from sage.structure.element import get_coercion_model
                import operator
                return get_coercion_model().bin_op(left, right, operator.div)
Beispiel #25
0
            def __truediv__(left, right):
                """
                Return the result of the division of ``left`` by ``right``, if possible.

                This top-level implementation delegates the work to
                the ``_div_`` method if ``left`` and ``right`` have
                the same parent and to coercion otherwise. See the
                extensive documentation at the top of
                :ref:`sage.structure.element`.

                .. SEEALSO:: :meth:`_div_`

                EXAMPLES::

                    sage: G = FreeGroup(2)
                    sage: x0, x1 = G.group_generators()
                    sage: c1 = cartesian_product([x0, x1])
                    sage: c2 = cartesian_product([x1, x0])
                    sage: c1.__div__(c2)
                    (x0*x1^-1, x1*x0^-1)
                    sage: c1 / c2
                    (x0*x1^-1, x1*x0^-1)

                Division supports coercion::

                    sage: C = cartesian_product([G, G])
                    sage: H = Hom(G, C)
                    sage: phi = H(lambda g: cartesian_product([g, g]))
                    sage: phi.register_as_coercion()
                    sage: x1 / c1
                    (x1*x0^-1, 1)
                    sage: c1 / x1
                    (x0*x1^-1, 1)

                Depending on how the division itself is implemented in
                :meth:`_div_`, division may fail even when ``right``
                actually divides ``left``::

                    sage: x = cartesian_product([2, 1])
                    sage: y = cartesian_product([1, 1])
                    sage: x / y
                    (2, 1)
                    sage: x / x
                    Traceback (most recent call last):
                    ...
                    TypeError: no conversion of this rational to integer

                TESTS::

                    sage: c1.__div__.__module__
                    'sage.categories.magmas'
                """
                from sage.structure.element import have_same_parent
                if have_same_parent(left, right):
                    return left._div_(right)
                from sage.structure.element import get_coercion_model
                import operator
                return get_coercion_model().bin_op(left, right, operator.div)
Beispiel #26
0
    def direct_sum(self, other):
        """
        Return the direct sum.

        INPUT:

        - ``other`` -- a filtered vector space.

        OUTPUT:

        The direct sum as a filtered vector space.

        EXAMPLES::

            sage: V = FilteredVectorSpace(2, 0)
            sage: W = FilteredVectorSpace({0:[(1,-1),(2,1)], 1:[(1,1)]})
            sage: V.direct_sum(W)
            QQ^4 >= QQ^1 >= 0
            sage: V + W    # syntactic sugar
            QQ^4 >= QQ^1 >= 0
            sage: V + V == FilteredVectorSpace(4, 0)
            True

            sage: W = FilteredVectorSpace([(1,-1),(2,1)], {1:[0,1], 2:[1]})
            sage: V + W
            QQ^4 >= QQ^2 >= QQ^1 >= 0

        A suitable base ring is chosen if they do not match::

            sage: v = [(1,0), (0,1)]
            sage: F1 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=QQ)
            sage: F2 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=RDF)
            sage: F1 + F2
            RDF^4 >= RDF^2 >= 0
        """
        from sage.structure.element import get_coercion_model
        base_ring = get_coercion_model().common_parent(self.base_ring(), other.base_ring())
        # construct the generators
        self_gens, self_filt = self.presentation()
        other_gens, other_filt = other.presentation()
        generators = \
            [ list(v) + [base_ring.zero()]*other.dimension() for v in self_gens  ] + \
            [ [base_ring.zero()]*self.dimension() + list(v)  for v in other_gens ]
        # construct the filtration dictionary
        def join_indices(self_indices, other_indices):
            self_indices = tuple(self_indices)
            other_indices = tuple(i + len(self_gens) for i in other_indices)
            return self_indices + other_indices
        filtration = dict()
        self_indices = set()
        other_indices = set()
        for deg in reversed(uniq(self_filt.keys() + other_filt.keys())):
            self_indices.update(self_filt.get(deg, []))
            other_indices.update(other_filt.get(deg, []))
            gens = join_indices(self_indices, other_indices)
            filtration[deg] = gens
        return FilteredVectorSpace(generators, filtration, base_ring=base_ring)
Beispiel #27
0
        def cup_product(self, cochain):
            """
            Return the cup product with another cochain

            INPUT:

            - ``cochain`` -- cochain over the same cell complex

            EXAMPLES::

                sage: T2 = simplicial_complexes.Torus()
                sage: C1 = T2.n_chains(1, base_ring=ZZ, cochains=True)
                sage: def l(i, j):
                ....:      return C1(Simplex([i, j]))
                sage: l1 = l(1, 3) + l(1, 4) + l(1, 6) + l(2, 4) - l(4, 5) + l(5, 6)
                sage: l2 = l(1, 6) - l(2, 3) - l(2, 5) + l(3, 6) - l(4, 5) + l(5, 6)

            The two one-cocycles are cohomology generators::

                sage: l1.is_cocycle(), l1.is_coboundary()
                (True, False)
                sage: l2.is_cocycle(), l2.is_coboundary()
                (True, False)

            Their cup product is a two-cocycle that is again non-trivial in
            cohomology::

                sage: l12 = l1.cup_product(l2)
                sage: l12
                \chi_(1, 3, 6) - \chi_(2, 4, 5) - \chi_(4, 5, 6)
                sage: l1.parent().degree(), l2.parent().degree(), l12.parent().degree()
                (1, 1, 2)
                sage: l12.is_cocycle(), l12.is_coboundary()
                (True, False)
            """
            if not isinstance(cochain.parent(), Cochains):
                raise ValueError('argument must be a cochain')
            if cochain.parent().cell_complex() != self.parent().cell_complex():
                raise ValueError('cochain must be over the same cell complex')
            left_deg = self.parent().degree()
            right_deg = cochain.parent().degree()
            left_chains = self.parent().dual()
            right_chains = cochain.parent().dual()
            base_ring = get_coercion_model().common_parent(
                left_chains.base_ring(), right_chains.base_ring())
            cx = self.parent().cell_complex()
            codomain = cx.n_chains(
                left_deg + right_deg, base_ring=base_ring, cochains=True)
            accumulator = codomain.zero()
            for cell in codomain.indices():
                for (coeff, left_cell, right_cell) in cx.alexander_whitney(cell, left_deg):
                        if not coeff:
                            continue
                        left = left_chains(left_cell)
                        right = right_chains(right_cell)
                        accumulator += codomain(cell) * coeff * self.eval(left) * cochain.eval(right)
            return accumulator
Beispiel #28
0
    def __eq__(self, other):
        r"""
        Return if this growth element is equal to ``other``.

        INPUT:

        - ``other`` -- an element.

        OUTPUT:

        A boolean.

        .. NOTE::

            This function uses the coercion model to find a common
            parent for the two operands.

            The comparison of two elements with the same parent is done in
            :meth:`_eq_`.

        EXAMPLES::

            sage: import sage.rings.asymptotic.growth_group as agg
            sage: G = agg.GenericGrowthGroup(ZZ)
            sage: G.an_element() == G.an_element()
            True
            sage: G(raw_element=42) == G(raw_element=7)
            False

        ::

            sage: G_ZZ = agg.GenericGrowthGroup(ZZ)
            sage: G_QQ = agg.GenericGrowthGroup(QQ)
            sage: G_ZZ(raw_element=1) == G_QQ(raw_element=1)
            True

        ::

            sage: P_ZZ = agg.MonomialGrowthGroup(ZZ, 'x')
            sage: P_QQ = agg.MonomialGrowthGroup(QQ, 'x')
            sage: P_ZZ.gen() == P_QQ.gen()
            True
            sage: ~P_ZZ.gen() == P_ZZ.gen()
            False
            sage: ~P_ZZ(1) == P_ZZ(1)
            True
        """
        from sage.structure.element import have_same_parent
        if have_same_parent(self, other):
            return self._eq_(other)

        from sage.structure.element import get_coercion_model
        import operator
        try:
            return get_coercion_model().bin_op(self, other, operator.eq)
        except TypeError:
            return False
 def apply_matrix(self,m,in_place=True, mapping=False):
     r"""
     Carry out the GL(2,R) action of m on this surface and return the result.
     
     If in_place=True, then this is done in place and changes the surface. 
     This can only be carried out if the surface is finite and mutable.
     
     If mapping=True, then we return a GL2RMapping between this surface and its image. 
     In this case in_place must be False.
     
     If in_place=False, then a copy is made before the deformation.
     """
     if mapping==True:
         assert in_place==False, "Can not modify in place and return a mapping."
         return GL2RMapping(self, m)
     if not in_place:
         if self.is_finite():
             from sage.structure.element import get_coercion_model
             cm = get_coercion_model()
             field = cm.common_parent(self.base_ring(), m.base_ring())
             s=self.copy(mutable=True, new_field=field)
             return s.apply_matrix(m)
         else:
             return m*self
     else:
         # Make sure m is in the right state
         from sage.matrix.constructor import Matrix
         m=Matrix(self.base_ring(), 2, 2, m)
         assert m.det()!=self.base_ring().zero(), "Can not deform by degenerate matrix."
         assert self.is_finite(), "In place GL(2,R) action only works for finite surfaces."
         us=self.underlying_surface()
         assert us.is_mutable(), "In place changes only work for mutable surfaces."
         for label in self.label_iterator():
             us.change_polygon(label,m*self.polygon(label))
         if m.det()<self.base_ring().zero():
             # Polygons were all reversed orientation. Need to redo gluings.
             
             # First pass record new gluings in a dictionary.
             new_glue={}
             seen_labels=set()
             for p1 in self.label_iterator():
                 n1=self.polygon(p1).num_edges()
                 for e1 in xrange(n1):
                     p2,e2=self.opposite_edge(p1,e1)
                     n2=self.polygon(p2).num_edges()
                     if p2 in seen_labels:
                         pass
                     elif p1==p2 and e1>e2:
                         pass
                     else:
                         new_glue[(p1, n1-1-e1)]=(p2, n2-1-e2)
                 seen_labels.add(p1)
             # Second pass: reassign gluings
             for (p1,e1),(p2,e2) in new_glue.iteritems():
                 us.change_edge_gluing(p1,e1,p2,e2)
         return self
Beispiel #30
0
 def __mul__(self,other):
     parent = self.parent()
     if isinstance(other,Matrix_inexact) and parent.base_ring() is other.parent().base_ring():
         group = self.group()
         if other.group() != group:
             raise TypeError("Can multiply only two matrices in the same group")
         return self._matrix_times_matrix_(other)
     else:
         from sage.structure.element import get_coercion_model
         return get_coercion_model().bin_op(self,other,mul)
Beispiel #31
0
 def __mul__(self,other):
     parent = self.parent()
     if parent == other.parent():
         group = self.group()
         if other.group() != group:
             raise GroupError("Can multiply only two elements in the same group")
         return self._mul_(other)
     else:
         from sage.structure.element import get_coercion_model
         return get_coercion_model().bin_op(self,other,mul)
Beispiel #32
0
        def __eq__(left, right):
            if not have_same_parent(left, right):
                from sage.structure.element import get_coercion_model

                try:
                    return get_coercion_model().bin_op(left, right, operator.eq)
                except TypeError:
                    return False
            else:
                left, right = left.reduce(), right.reduce()
                return super(SteenrodAlgebraBase.Element, left).__eq__(right)
Beispiel #33
0
        def eval(self, other):
            """
            Evaluate this cochain on the chain ``other``.

            INPUT:

            - ``other`` -- a chain for the same cell complex in the
              same dimension with the same base ring

            OUTPUT: scalar

            EXAMPLES::

                sage: S2 = simplicial_complexes.Sphere(2)
                sage: C_2 = S2.n_chains(1)
                sage: C_2_co = S2.n_chains(1, cochains=True)
                sage: x = C_2.basis()[Simplex((0,2))]
                sage: y = C_2.basis()[Simplex((1,3))]
                sage: z = x+2*y
                sage: a = C_2_co.basis()[Simplex((1,3))]
                sage: b = C_2_co.basis()[Simplex((0,3))]
                sage: c = 3*a-2*b
                sage: z
                (0, 2) + 2*(1, 3)
                sage: c
                -2*\chi_(0, 3) + 3*\chi_(1, 3)
                sage: c.eval(z)
                6

            TESTS::

                sage: z.eval(c) # z is not a cochain
                Traceback (most recent call last):
                ...
                AttributeError: 'Chains_with_category.element_class' object has no attribute 'eval'
                sage: c.eval(c) # can't evaluate a cochain on a cochain
                Traceback (most recent call last):
                ...
                ValueError: argument is not a chain
            """
            if not isinstance(other.parent(), Chains):
                raise ValueError('argument is not a chain')
            if other.parent().indices() != self.parent().indices():
                raise ValueError('the cells are not compatible')
            result = sum(coeff * other.coefficient(cell)
                         for cell, coeff in self)
            R = self.base_ring()
            if R != other.base_ring():
                cm = get_coercion_model()
                R = cm.common_parent(R, other.base_ring())
            return R(result)
Beispiel #34
0
        def __rmul__(right, left):
            """
            TESTS::

                sage: F = CombinatorialFreeModule(QQ, ["a", "b"])
                sage: x = F.monomial("a")
                sage: int(2) * x
                2*B['a']

            TODO: make a better unit test once Modules().example() is implemented
            """
            from sage.structure.element import get_coercion_model
            import operator
            return get_coercion_model().bin_op(left, right, operator.mul)
    def tangent_vector(self, lab, p, v, ring=None):
        r"""
        Return a tangent vector.

        INPUT:

        - ``lab`` -- label of a polygon

        - ``p`` -- coordinates of a point in the polygon

        - ``v`` -- coordinates of a vector in R^2
        
        EXAMPLES::

            sage: from flatsurf.geometry.chamanara import chamanara_surface
            sage: S = chamanara_surface(1/2)
            sage: S.tangent_vector(S.base_label(), (1/2,1/2), (1,1))
            SimilaritySurfaceTangentVector in polygon (1, [-1  0]
            [ 0 -1]) based at (1/2, -3/2) with vector (1, 1)
            sage: K.<sqrt2> = QuadraticField(2)
            sage: S.tangent_vector(S.base_label(), (1/2,1/2), (1,sqrt2))
            SimilaritySurfaceTangentVector in polygon (1, [-1  0]
            [ 0 -1]) based at (1/2, -3/2) with vector (1, sqrt2)
        """
        p = vector(p)
        v = vector(v)

        if p.parent().dimension() != 2 or v.parent().dimension() != 2:
            raise ValueError("p (={!r}) and v (={!v}) should have two coordinates")

        if ring is None:
            R = p.base_ring()
            if R != v.base_ring():
                from sage.structure.element import get_coercion_model
                cm = get_coercion_model()
                R = cm.common_parent(R, v.base_ring())
                p = p.change_ring(R)
                v = v.change_ring(R)
    
            R2 = self.base_ring()
            if R != R2:
                if R2.has_coerce_map_from(R):
                    p = p.change_ring(R2)
                    v = v.change_ring(R2)
                    R = R2
                elif not R.has_coerce_map_from(R2):
                    raise ValueError("not able to find a common ring for arguments")
            return self.tangent_bundle(R)(lab, p, v)
        else:
            return self.tangent_bundle(ring)(lab, p, v)
Beispiel #36
0
        def __rmul__(right, left):
            """
            TESTS::

                sage: F = CombinatorialFreeModule(QQ, ["a", "b"])
                sage: x = F.monomial("a")
                sage: int(2) * x
                2*B['a']

            TODO: make a better unit test once Modules().example() is implemented
            """
            from sage.structure.element import get_coercion_model
            import operator
            return get_coercion_model().bin_op(left, right, operator.mul)
 def __init__(self, surface, m, ring=None):
     self._s=surface
     if m.determinant()<=0:
         raise ValueError("Currently only works with matrices of positive determinant.""")
     self._m=m
     if ring is None:
         if m.base_ring() == self._s.base_ring():
             self._base_ring = self._s.base_ring()
         else:
             from sage.structure.element import get_coercion_model
             cm = get_coercion_model()
             self._base_ring = cm.common_parent(m.base_ring(), self._s.base_ring())
     else:
         self._base_ring=ring
     self._P=Polygons(self._base_ring)
Beispiel #38
0
 def __init__(self, domain_intervals, directed_move, parent=None):
     function = fast_linear_function(directed_move[0], directed_move[1])
     pieces = [(interval, function) for interval in domain_intervals]
     self._piecewise = piecewise = PiecewiseLinearFunction_1d(pieces)
     self.directed_move = tuple(directed_move)
     if parent is None:
         from sage.structure.element import get_coercion_model
         from sage.categories.rings import Rings
         cm = get_coercion_model()
         domain = cm.common_parent(directed_move[1],
                                   *piecewise.end_points())
         if domain in Rings():
             domain = domain.fraction_field()
         parent = FullMoveSemigroup(domain)
     super(FunctionalDirectedMove, self).__init__(parent)
Beispiel #39
0
        def __mul__(self, right):
            """
            EXAMPLES::

                sage: s = SFASchur(QQ)
                sage: a = s([2])
                sage: a._mul_(a) #indirect doctest
                s[2, 2] + s[3, 1] + s[4]

            Todo: use AlgebrasWithBasis(QQ).example()
            """
            if have_same_parent(self, right) and hasattr(self, "_mul_"):
                return self._mul_(right)
            from sage.structure.element import get_coercion_model
            import operator
            return get_coercion_model().bin_op(self, right, operator.mul)
Beispiel #40
0
        def __mul__(self, right):
            """
            EXAMPLES::

                sage: s = SFASchur(QQ)
                sage: a = s([2])
                sage: a._mul_(a) #indirect doctest
                s[2, 2] + s[3, 1] + s[4]

            Todo: use AlgebrasWithBasis(QQ).example()
            """
            if have_same_parent(self, right) and hasattr(self, "_mul_"):
                return self._mul_(right)
            from sage.structure.element import get_coercion_model
            import operator
            return get_coercion_model().bin_op(self, right, operator.mul)
Beispiel #41
0
        def __disabled_cmp__(left, right):
            if not have_same_parent(left, right):
                from sage.structure.element import get_coercion_model

                try:
                    return get_coercion_model().bin_op(left, right, cmp)
                except TypeError:
                    return -1
            else:
                print(
                    (
                        type(left._monomial_coefficients),
                        type(right._monomial_coefficients),
                    )
                )
                left, right = left.reduce(), right.reduce()
                return super(SteenrodAlgebraBase.Element, left).__cmp__(right)
Beispiel #42
0
        def __radd__(self, left):
            r"""
            Handles the sum of two elements, when the left hand side
            needs to be coerced first.

            EXAMPLES::

                sage: F = CommutativeAdditiveSemigroups().example()
                sage: (a,b,c,d) = F.additive_semigroup_generators()
                sage: a.__radd__(b)
                a + b
            """
            if have_same_parent(left, self) and hasattr(left, "_add_"):
                return left._add_(self)
            from sage.structure.element import get_coercion_model
            import operator
            return get_coercion_model().bin_op(left, self, operator.add)
Beispiel #43
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: a, b = var('a, b')
            sage: bessel_J(a, b)
            bessel_J(a, b)
            sage: bessel_J(1.0, 1.0)
            0.440050585744933
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression)
                and (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        return None
Beispiel #44
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: a,b = var('a, b')
            sage: bessel_Y(a, b)
            bessel_Y(a, b)
            sage: bessel_Y(0, 1).n(128)
            0.088256964215676957982926766023515162828
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression)
                and (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        return None  # leaves the expression unevaluated
        def __sub__(left, right):
            """
            Top-level subtraction operator
            See extensive documentation at the top of element.pyx.

            EXAMPLES::

                sage: F = CombinatorialFreeModule(QQ, ['a','b'])
                sage: a,b = F.basis()
                sage: a - b
                B['a'] - B['b']
            """
            if have_same_parent(left, right) and hasattr(left, "_sub_"):
                return left._sub_(right)
            from sage.structure.element import get_coercion_model
            import operator
            return get_coercion_model().bin_op(left, right, operator.sub)
Beispiel #46
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: a,b = var('a, b')
            sage: bessel_Y(a, b)
            bessel_Y(a, b)
            sage: bessel_Y(0, 1).n(128)
            0.088256964215676957982926766023515162828
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression) and
                (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        return None  # leaves the expression unevaluated
Beispiel #47
0
        def __radd__(self, left):
            r"""
            Handles the sum of two elements, when the left hand side
            needs to be coerced first.

            EXAMPLES::

                sage: F = CommutativeAdditiveSemigroups().example()
                sage: (a,b,c,d) = F.additive_semigroup_generators()
                sage: a.__radd__(b)
                a + b
            """
            if have_same_parent(left, self) and hasattr(left, "_add_"):
                return left._add_(self)
            from sage.structure.element import get_coercion_model
            import operator
            return get_coercion_model().bin_op(left, self, operator.add)
Beispiel #48
0
        def _act_on_(self, x, self_on_left):
            """
            Return the action of ``self`` on ``x`` by seeing if there is an
            action of the defining Lie algebra.

            EXAMPLES::

                sage: L = lie_algebras.VirasoroAlgebra(QQ)
                sage: d = L.basis()
                sage: x = d[-1]*d[-2]*d[-1] + 3*d[-3]
                sage: x
                PBW[-2]*PBW[-1]^2 + PBW[-3]*PBW[-1] + 3*PBW[-3]
                sage: M = L.verma_module(1/2,3/4)
                sage: v = M.highest_weight_vector()
                sage: x * v
                3*d[-3]*v + d[-3]*d[-1]*v + d[-2]*d[-1]*d[-1]*v
            """
            # Try the _acted_upon_ first as it might have a direct PBW action
            #   implemented that is faster
            ret = x._acted_upon_(self, not self_on_left)
            if ret is not None:
                return ret
            cm = get_coercion_model()
            L = self.parent()._g
            if self_on_left:
                if cm.discover_action(L, x.parent(), mul):
                    ret = x.parent().zero()
                    for mon, coeff in self._monomial_coefficients.items():
                        term = coeff * x
                        for k, exp in reversed(mon._sorted_items()):
                            for _ in range(exp):
                                term = L.monomial(k) * term
                        ret += term
                    return ret
            else:
                if cm.discover_action(x.parent(), L, mul):
                    ret = x.parent().zero()
                    for mon, coeff in self._monomial_coefficients.items():
                        term = coeff * x
                        for k, exp in reversed(mon._sorted_items()):
                            for _ in range(exp):
                                term = term * L.monomial(k)
                        ret += term
                    return ret
            return None
Beispiel #49
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: a, b = var('a, b')
            sage: bessel_J(a, b)
            bessel_J(a, b)
            sage: bessel_J(1.0, 1.0)
            0.440050585744933
        """
        if (not isinstance(n, Expression) and
                not isinstance(x, Expression) and
                (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        return None
Beispiel #50
0
 def _eval_(self, a, b, z, **kwargs):
     """
     EXAMPLES::
     
         sage: hypergeometric([], [], 0)
         1
     """
     if not isinstance(a,tuple) or not isinstance(b,tuple):
         raise ValueError('First two parameters must be of type list.')
     coercion_model = get_coercion_model()
     co = reduce(lambda x, y: coercion_model.canonical_coercion(x, y)[0],
                 a + b + (z,))
     if is_inexact(co) and not isinstance(co, Expression):
         from sage.structure.coerce import parent
         return self._evalf_(a, b, z, parent=parent(co))
     if not isinstance(z, Expression) and z == 0:  # Expression is excluded
         return Integer(1)                         # to avoid call to Maxima
     return
Beispiel #51
0
 def _eval_(self, a, b, z, **kwargs):
     """
     EXAMPLES::
     
         sage: hypergeometric([], [], 0)
         1
     """
     if not isinstance(a,tuple) or not isinstance(b,tuple):
         raise ValueError('First two parameters must be of type list.')
     coercion_model = get_coercion_model()
     co = reduce(lambda x, y: coercion_model.canonical_coercion(x, y)[0],
                 a + b + (z,))
     if is_inexact(co) and not isinstance(co, Expression):
         from sage.structure.coerce import parent
         return self._evalf_(a, b, z, parent=parent(co))
     if not isinstance(z, Expression) and z == 0:  # Expression is excluded
         return Integer(1)                         # to avoid call to Maxima
     return
Beispiel #52
0
    def __classcall_private__(cls, k, q1, q2, q3, base_ring=None, prefix='B'):
        r"""
        Normalize input to ensure a unique representation.

        TESTS::

            sage: R.<q,r,s> = ZZ[]
            sage: B3 = algebras.Blob(3, q, r, s)
            sage: Bp = algebras.Blob(3, q, r, s, R, prefix='B')
            sage: B3 is Bp
            True
        """
        if base_ring is None:
            base_ring = get_coercion_model().common_parent(q1, q2, q3)
        q1 = base_ring(q1)
        q2 = base_ring(q2)
        q3 = base_ring(q3)
        return super(BlobAlgebra, cls).__classcall__(cls, k, q1, q2, q3, base_ring, prefix)
    def __eq__(self, other):
        r"""
        Equality test.

        EXAMPLES::

            sage: UCF = UniversalCyclotomicField()
            sage: UCF.one() == 1
            True
            sage: 1 == UCF.one()
            True

            sage: UCF(2/3) == 2/3
            True
            sage: 2/3 == UCF(2/3)
            True

            sage: UCF.gen(3) == UCF.gen(5)
            False
            sage: UCF.gen(5) + UCF.gen(3) == UCF.gen(3) + UCF.gen(5)
            True

            sage: UCF.zero() == None
            False

            sage: QQbar.zeta(5) == UCF.gen(5)
            True
            sage: UCF.gen(5) == QQbar.zeta(5)
            True
            sage: QQbar.zeta(5) == UCF.gen(5,2)
            False
            sage: UCF.gen(5,2) == QQbar.zeta(5)
            False
        """
        if parent(self) is not parent(other):
            from sage.structure.element import get_coercion_model

            cm = get_coercion_model()
            try:
                self, other = cm.canonical_coercion(self, other)
            except TypeError:
                return False
            return self == other
        return self._obj == other._obj
    def __eq__(self, other):
        r"""
        Equality test.

        EXAMPLES::

            sage: UCF = UniversalCyclotomicField()
            sage: UCF.one() == 1
            True
            sage: 1 == UCF.one()
            True

            sage: UCF(2/3) == 2/3
            True
            sage: 2/3 == UCF(2/3)
            True

            sage: UCF.gen(3) == UCF.gen(5)
            False
            sage: UCF.gen(5) + UCF.gen(3) == UCF.gen(3) + UCF.gen(5)
            True

            sage: UCF.zero() == None
            False

            sage: QQbar.zeta(5) == UCF.gen(5)
            True
            sage: UCF.gen(5) == QQbar.zeta(5)
            True
            sage: QQbar.zeta(5) == UCF.gen(5,2)
            False
            sage: UCF.gen(5,2) == QQbar.zeta(5)
            False
        """
        if parent(self) is not parent(other):
            from sage.structure.element import get_coercion_model
            cm = get_coercion_model()
            try:
                self, other = cm.canonical_coercion(self, other)
            except TypeError:
                return False
            return self == other
        return self._obj == other._obj
    def weight_ring(self):
        """
        Returns the weight ring for this species. This is determined by
        asking Sage's coercion model what the result is when you multiply
        (and add) elements of the weight rings for each of the operands.

        EXAMPLES::

            sage: G = species.SimpleGraphSpecies()
            sage: G.weight_ring()
            Rational Field
        """
        from sage.structure.element import get_coercion_model
        cm = get_coercion_model()

        f_weights = self._F.weight_ring()
        g_weights = self._G.weight_ring()

        return cm.explain(f_weights, g_weights, verbosity=0)
    def weight_ring(self):
        """
        Returns the weight ring for this species. This is determined by
        asking Sage's coercion model what the result is when you multiply
        (and add) elements of the weight rings for each of the operands.

        EXAMPLES::

            sage: G = species.SimpleGraphSpecies()
            sage: G.weight_ring()
            Rational Field
        """
        from sage.structure.element import get_coercion_model
        cm = get_coercion_model()

        f_weights = self._F.weight_ring()
        g_weights = self._G.weight_ring()

        return cm.explain(f_weights, g_weights, verbosity=0)