def test_history(sage_output_formats: List[str]) -> None:
    """
    Ensure generated history plots are identical for both output formats.
    """

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    labels = ["Mini-Millennium"]
    first_files_to_analyze = [0]
    last_files_to_analyze = [0]
    num_sage_output_files = [1]
    plot_toggles = {
        "SMF_history": True,
        "SFRD_history": True,
        "SMD_history": True
    }

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
        num_sage_output_files=num_sage_output_files,
        first_files_to_analyze=first_files_to_analyze,
        last_files_to_analyze=last_files_to_analyze,
        plot_toggles=plot_toggles,
        labels=labels,
    )

    galaxy_analysis.analyze_galaxies()
    galaxy_analysis.generate_plots(plot_helper=PlotHelper)

    my_compare_images(baseline_image_path, generated_image_path)
def test_history_and_baseline(sage_output_formats: List[str]) -> None:
    """
    Ensure that if ALL plot toggles are turned on, then all plots can be generated in one go.
    """

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    labels = ["Mini-Millennium"]
    first_files_to_analyze = [0]
    last_files_to_analyze = [0]
    num_sage_output_files = [1]
    random_seeds = [666]

    plot_toggles = default_plot_toggles
    history_properties = ["SMF_history", "SFRD_history", "SMD_history"]

    for key in history_properties:
        plot_toggles[key] = True

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
        num_sage_output_files=num_sage_output_files,
        first_files_to_analyze=first_files_to_analyze,
        last_files_to_analyze=last_files_to_analyze,
        random_seeds=random_seeds,
        plot_toggles=plot_toggles,
        labels=labels,
    )

    galaxy_analysis.analyze_galaxies()
    galaxy_analysis.generate_plots(plot_helper=PlotHelper)

    my_compare_images(baseline_image_path, generated_image_path)
Beispiel #3
0
def test_redshift_zero():
    """
    User explicitly asked for redshift 0.  This should correspond to the default scenario.
    """

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    sage_output_formats = ["sage_hdf5"]
    labels = ["Mini-Millennium"]
    random_seeds = [666]
    generated_image_path = "test_data/generated_plots/"

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
        random_seeds=random_seeds,
        labels=labels,
    )

    redshifts = [[0.0]]
    galaxy_analysis.analyze_galaxies(redshifts=redshifts)

    galaxy_analysis.generate_plots(plot_helper=plot_helper,
                                   redshifts=redshifts)

    my_compare_images(baseline_image_path, generated_image_path)
Beispiel #4
0
def test_random_combinations(plot_toggles: Dict[str, bool]) -> None:
    """
    Ensure that any random combination of plot toggles run as expected using default arugments.

    Note: This runs 100 different combinations of plot toggles, each time opening/closing files and generating plots.
    Consequently, it takes ~2 minutes to run. This test can be skipped by running ``pytest -m "not hypothesis"``.
    """

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    sage_output_formats = ["sage_hdf5"]
    labels = ["Mini-Millennium"]
    random_seeds = [666]
    generated_image_path = "test_data/generated_plots/"

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
        random_seeds=random_seeds,
        labels=labels,
        plot_toggles=plot_toggles,
    )

    galaxy_analysis.analyze_galaxies()
    figs = galaxy_analysis.generate_plots(plot_helper=plot_helper)

    # When ``plot_toggles = {}``, no figures are generated. This is still a valid scenario to test however there isn't
    # anything we want to be comparing.
    if figs is None:
        return

    my_compare_images(baseline_image_path, generated_image_path)
Beispiel #5
0
def test_additional_property(caplog):
    """
    A new property can be analyzed and accounted for.
    """

    caplog.set_level(logging.INFO)

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    sage_output_formats = ["sage_hdf5"]

    baseline_plot_toggles = {"SMF": True}
    baseline_calculation_functions = generate_func_dict(
        baseline_plot_toggles, "sage_analysis.example_calcs", "calc_")
    baseline_plot_functions = generate_func_dict(
        baseline_plot_toggles, "sage_analysis.example_plots", "plot_")

    extra_plot_toggles = {"num_particles_in_halo": True}
    extra_calculation_functions = generate_func_dict(
        extra_plot_toggles, "sage_analysis.tests.test_galaxy_analysis",
        "calc_")
    extra_plot_functions = generate_func_dict(
        extra_plot_toggles, "sage_analysis.tests.test_galaxy_analysis",
        "plot_")

    baseline_plot_toggles.update(extra_plot_toggles)
    baseline_calculation_functions.update(extra_calculation_functions)
    baseline_plot_functions.update(extra_plot_functions)

    galaxy_properties_to_analyze = {
        "stellar_mass_bins": {
            "type": "binned",
            "bin_low": 8.0,
            "bin_high": 12.0,
            "bin_width": 0.1,
            "property_names": ["SMF", "red_SMF", "blue_SMF"],
        },
        "halo_len_bins": {
            "type": "binned",
            "bin_low": 1.0,
            "bin_high": 1000.0,
            "bin_width": 1,
            "property_names": ["halo_len"],
        }
    }

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
        plot_toggles=baseline_plot_toggles,
        calculation_functions=baseline_calculation_functions,
        plot_functions=baseline_plot_functions,
        galaxy_properties_to_analyze=galaxy_properties_to_analyze,
    )

    galaxy_analysis.analyze_galaxies()
    assert f"Initialized galaxy properties {galaxy_properties_to_analyze['stellar_mass_bins']} for Snapshot 63" in caplog.text
    assert f"Initialized galaxy properties {galaxy_properties_to_analyze['halo_len_bins']} for Snapshot 63" in caplog.text
    galaxy_analysis.generate_plots(plot_helper=plot_helper)
    assert "Passed through ``plot_num_particles_in_halo``." in caplog.text
    os.remove(f"{generated_image_path}/1.StellarMassFunction.png")
Beispiel #6
0
def test_multiple_models() -> None:
    """
    If the user specifies multiple models, they should be analyzed and plotted no problemo.
    """

    parameter_fnames = [
        f"{test_path}/test_data/mini-millennium.par",
        f"{test_path}/test_data/mini-millennium.par"
    ]
    sage_output_formats = ["sage_binary", "sage_hdf5"]
    labels = ["Binary", "HDF5"]
    num_sage_output_files = [1, None]
    first_files_to_analyze = [0, None]
    last_files_to_analyze = [0, None]

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
        num_sage_output_files=num_sage_output_files,
        first_files_to_analyze=first_files_to_analyze,
        last_files_to_analyze=last_files_to_analyze,
        labels=labels,
    )
    galaxy_analysis.analyze_galaxies()

    assert len(galaxy_analysis._models) == 2

    # To ensure we have visual difference between the stellar mass function, let's add some offset to one model and
    # then plot the output.
    galaxy_analysis._models[0].properties["snapshot_63"]["SMF"] *= 1.5
    galaxy_analysis.generate_plots()
Beispiel #7
0
def test_use_parameter_file_format(caplog) -> None:
    """
    If no SAGE output format is specified, then it should use the output format specified in the SAGE parameter file.
    In this instance, it should log some info.
    """

    caplog.set_level(logging.INFO)

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    num_sage_output_files = [1]
    first_files_to_analyze = [0]
    last_files_to_analyze = [0]

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        num_sage_output_files=num_sage_output_files,
        first_files_to_analyze=first_files_to_analyze,
        last_files_to_analyze=last_files_to_analyze,
    )
    galaxy_analysis.analyze_galaxies()

    assert galaxy_analysis._models[0].sage_output_format == "sage_binary"
    assert f"No SAGE output format specified. Attempting to read ``{parameter_fnames[0]}`` and using the " \
        "format specified inside." in caplog.text
    assert "Using ``sage_binary`` output format."
Beispiel #8
0
def test_hdf5_sage_num_output_file_message(caplog):
    """
    When analysing HDF5 SAGE output, the number of output files that SAGE produced (i.e., the number of cores SAGE ran
    on) is read from the HDF5 itself.

    In the scenario where the user specifies a value for the number of output files, we generate a "DEBUG" message to
    inform that this is unecessary. Furthermore, if the passed value is differently to what is inside the HDF5 file, we
    generate a "UserWarning".
    """

    caplog.set_level(logging.DEBUG)

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    sage_output_formats = ["sage_hdf5"]
    num_sage_output_files = [100]

    with pytest.warns(UserWarning) as record:
        galaxy_analysis = GalaxyAnalysis(
            parameter_fnames,
            sage_output_formats=sage_output_formats,
            num_sage_output_files=num_sage_output_files,
        )
        galaxy_analysis.analyze_galaxies()

    # Check that the messages appeared in the log.
    assert "It is not required to specify the number of SAGE output files when analysing HDF5 output." in caplog.text
    assert record[0].message.args[0] ==  f"The number of SAGE output files according to the master HDF5 file is 1. " \
        f"However, ``analyze_sage_output`` was called with {num_sage_output_files[0]}. Using the number of files " \
        "from the HDF5 file as the correct value."
Beispiel #9
0
def test_multiple_snapshots():
    """
    The user can request to analyse + plot multiple snapshots at the same time.
    """

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    sage_output_formats = ["sage_hdf5"]
    labels = ["Mini-Millennium"]
    random_seeds = [666]
    generated_image_path = "test_data/generated_plots/"

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
        random_seeds=random_seeds,
        labels=labels,
    )

    snapshots = [[63, 37, 32]]
    galaxy_analysis.analyze_galaxies(snapshots=snapshots)
Beispiel #10
0
def test_keyword_arguments():

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    sage_output_formats = ["sage_hdf5"]
    labels = ["Mini-Millennium"]
    random_seeds = [666]
    generated_image_path = "test_data/generated_plots/keyword_args"

    plot_toggles = {"SMF": True, "quiescent": True, "baryon_fraction": True}

    kwargs = {"SMF": {"calc_sub_populations": True}}
    calculation_functions = generate_func_dict(plot_toggles,
                                               "sage_analysis.example_calcs",
                                               "calc_", kwargs)

    kwargs = {
        "SMF": {
            "plot_sub_populations": True
        },
        "quiescent": {
            "plot_sub_populations": True
        },
        "baryon_fraction": {
            "plot_sub_populations": True
        }
    }
    plot_functions = generate_func_dict(plot_toggles,
                                        "sage_analysis.example_plots", "plot_",
                                        kwargs)

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
        random_seeds=random_seeds,
        labels=labels,
        plot_toggles=plot_toggles,
        calculation_functions=calculation_functions,
        plot_functions=plot_functions)

    galaxy_analysis.analyze_galaxies()
Beispiel #11
0
def test_defaults(caplog):
    """
    If parameters aren't specified, they should be read from the parameter file.
    """

    caplog.set_level(logging.INFO)

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    sage_output_formats = ["sage_hdf5"]
    random_seeds = [666]

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
        random_seeds=random_seeds,
    )

    assert galaxy_analysis._models[0].snapshot == 63
    assert "Snapshot to analyze not specified; using final snapshot of the simulation (63)" in caplog.text

    assert galaxy_analysis._models[0].label == "correct-mini-millennium-output"
    assert "Label not specified; using the FileNameGalaxies from parameter file (correct-mini-millennium-output)" \
        in caplog.text

    assert galaxy_analysis._models[0].first_file_to_analyze == 0
    assert "First file to analyze not specified; using 0" in caplog.text

    assert galaxy_analysis._models[0].last_file_to_analyze == 0
    assert "Last file to analyze not specified; using num cores SAGE ran with minus 1 (0)"

    # The only thing that should be different to the baseline plots is the label in the legend. Hence if we update the
    # label and generate the plots, they should be identical.
    galaxy_analysis.analyze_galaxies()
    galaxy_analysis._models[0]._label = "Mini-Millennium"

    generated_image_path = "test_data/generated_plots/"
    galaxy_analysis.generate_plots(plot_helper=plot_helper)

    my_compare_images(baseline_image_path, generated_image_path)
Beispiel #12
0
def test_other_sages():

    parameter_fnames = [
        f"{test_path}/test_data/mini-millennium.par",
        "/Users/jacobseiler/Desktop/DarkSage/input/millennium.par",
        "/Users/jacobseiler/Desktop/dusty-sage/src/auxdata/trees/mini-millennium/mini-millennium.par",
    ]
    sage_output_formats = ["sage_hdf5", "sage_dark", "sage_dusty"]
    labels = ["Base SAGE", "Dark SAGE", "Dusty SAGE"]
    random_seeds = [666, 666, 666]
    generated_image_path = "test_data/generated_plots/other_sages/"
    output_format_data_classes_dict = {
        "sage_binary": SageBinaryData,
        "sage_hdf5": SageHdf5Data,
        "sage_dark": SageDarkData,
        "sage_dusty": SageDustyData,
    }
    plot_toggles = {"SMF": True}

    first_files_to_analyze = [0, 0, 0]
    last_files_to_analyze = [0, 7, 7]
    num_sage_output_files = [1, 8, 8]

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
        random_seeds=random_seeds,
        plot_toggles=plot_toggles,
        labels=labels,
        output_format_data_classes_dict=output_format_data_classes_dict,
        num_sage_output_files=num_sage_output_files,
        first_files_to_analyze=first_files_to_analyze,
        last_files_to_analyze=last_files_to_analyze,
    )

    galaxy_analysis.analyze_galaxies()

    galaxy_analysis.generate_plots(plot_helper=plot_helper)
Beispiel #13
0
def test_sage_output_format(sage_output_formats):

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    labels = ["Mini-Millennium"]
    first_files_to_analyze = [0]
    last_files_to_analyze = [0]
    num_sage_output_files = [1]
    random_seeds = [666]

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
        num_sage_output_files=num_sage_output_files,
        first_files_to_analyze=first_files_to_analyze,
        last_files_to_analyze=last_files_to_analyze,
        labels=labels,
        random_seeds=random_seeds,
    )

    galaxy_analysis.analyze_galaxies()
    galaxy_analysis.generate_plots(plot_helper=plot_helper)

    my_compare_images(baseline_image_path, generated_image_path, False)
Beispiel #14
0
def test_both_snapshots_and_redshift():
    """
    User requests to read both snapshots and redshifts. Should throw an error.
    """

    parameter_fnames = [f"{test_path}/test_data/mini-millennium.par"]
    sage_output_formats = ["sage_hdf5"]

    galaxy_analysis = GalaxyAnalysis(
        parameter_fnames,
        sage_output_formats=sage_output_formats,
    )

    snapshots = "All"
    redshifts = "All"

    with pytest.raises(ValueError):
        galaxy_analysis.analyze_galaxies(snapshots=snapshots,
                                         redshifts=redshifts)

    with pytest.raises(ValueError):
        galaxy_analysis.generate_plots(snapshots=snapshots,
                                       redshifts=redshifts)
Beispiel #15
0
from pathlib import Path

from sage_analysis.galaxy_analysis import GalaxyAnalysis
from sage_analysis.default_analysis_arguments import default_plot_toggles

if __name__ == "__main__":

    millennium_par_fname = Path(__file__).parent.joinpath(
        "../input/millennium.par")
    par_fnames = [millennium_par_fname]

    plot_toggles = default_plot_toggles.copy(
    )  # Copy to ensure ``default_plot_toggles`` aren't overwritten.

    plot_toggles["SMF_history"] = True
    plot_toggles["SMD_history"] = True
    plot_toggles["SFRD_history"] = True

    galaxy_analysis = GalaxyAnalysis(
        par_fnames,
        plot_toggles=plot_toggles,
        history_redshifts={
            "SMF_history": [0.0, 0.5, 1.0, 2.0, 3.0],
            "SMD_history": "All",
            "SFRD_history": "All",
        },
    )
    galaxy_analysis.analyze_galaxies()
    galaxy_analysis.generate_plots()