def test_async_fit(sagemaker_session):
    endpoint_name = 'test-chainer-attach-deploy-{}'.format(
        sagemaker_timestamp())

    with timeout(minutes=5):
        training_job_name = _run_mnist_training_job(
            sagemaker_session,
            "ml.c4.xlarge",
            1,
            chainer_full_version=CHAINER_VERSION,
            wait=False)

        print("Waiting to re-attach to the training job: %s" %
              training_job_name)
        time.sleep(20)

    with timeout_and_delete_endpoint_by_name(endpoint_name,
                                             sagemaker_session,
                                             minutes=35):
        print("Re-attaching now to: %s" % training_job_name)
        estimator = Chainer.attach(training_job_name=training_job_name,
                                   sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1,
                                     "ml.c4.xlarge",
                                     endpoint_name=endpoint_name)
        _predict_and_assert(predictor)
def test_attach_deploy(chainer_training_job, sagemaker_session):
    endpoint_name = 'test-chainer-attach-deploy-{}'.format(sagemaker_timestamp())

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        estimator = Chainer.attach(chainer_training_job, sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
        _predict_and_assert(predictor)
def test_attach_deploy(chainer_training_job, sagemaker_session):
    endpoint_name = 'test-chainer-attach-deploy-{}'.format(sagemaker_timestamp())

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        estimator = Chainer.attach(chainer_training_job, sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
        _predict_and_assert(predictor)
Beispiel #4
0
def test_attach_deploy(chainer_training_job, sagemaker_session):
    endpoint_name = unique_name_from_base('test-chainer-attach-deploy')

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        estimator = Chainer.attach(chainer_training_job,
                                   sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1,
                                     'ml.m4.xlarge',
                                     endpoint_name=endpoint_name)
        _predict_and_assert(predictor)
def test_async_fit(sagemaker_session):
    endpoint_name = 'test-chainer-attach-deploy-{}'.format(sagemaker_timestamp())

    with timeout(minutes=5):
        training_job_name = _run_mnist_training_job(sagemaker_session, "ml.c4.xlarge", 1,
                                                    chainer_full_version=CHAINER_VERSION, wait=False)

        print("Waiting to re-attach to the training job: %s" % training_job_name)
        time.sleep(20)

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        print("Re-attaching now to: %s" % training_job_name)
        estimator = Chainer.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1, "ml.c4.xlarge", endpoint_name=endpoint_name)
        _predict_and_assert(predictor)
def test_attach_deploy(sagemaker_session, chainer_latest_version,
                       chainer_latest_py_version, cpu_instance_type):
    with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
        script_path = os.path.join(DATA_DIR, "chainer_mnist", "mnist.py")
        data_path = os.path.join(DATA_DIR, "chainer_mnist")

        chainer = Chainer(
            entry_point=script_path,
            role="SageMakerRole",
            framework_version=chainer_latest_version,
            py_version=chainer_latest_py_version,
            instance_count=1,
            instance_type=cpu_instance_type,
            sagemaker_session=sagemaker_session,
            hyperparameters={"epochs": 1},
        )

        train_input = sagemaker_session.upload_data(
            path=os.path.join(data_path, "train"),
            key_prefix="integ-test-data/chainer_mnist/train")

        test_input = sagemaker_session.upload_data(
            path=os.path.join(data_path, "test"),
            key_prefix="integ-test-data/chainer_mnist/test")

        job_name = unique_name_from_base("test-chainer-training")
        chainer.fit({
            "train": train_input,
            "test": test_input
        },
                    wait=False,
                    job_name=job_name)

    endpoint_name = unique_name_from_base("test-chainer-attach-deploy")

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        estimator = Chainer.attach(chainer.latest_training_job.name,
                                   sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1,
                                     cpu_instance_type,
                                     endpoint_name=endpoint_name)
        _predict_and_assert(predictor)