Beispiel #1
0
def _input(epochs, batch_size, channel, channel_name, hvd=None):
    if hvd != None:
        channel_name = '{}_{}'.format(channel_name, hvd.rank() % 4)

    print("The channel name is ", channel_name)
    channel_input_dir = args.training_env['channel_input_dirs'][channel_name]
    print("The corresponding input directory is ", channel_input_dir)
    mode = args.data_config[channel_name]['TrainingInputMode']
    if mode == 'Pipe':
        from sagemaker_tensorflow import PipeModeDataset
        dataset = PipeModeDataset(channel=channel_name,
                                  record_format='TFRecord')
    else:
        filenames = get_filenames(channel_input_dir, hvd)
        print("The correpsonding filenames are", filenames)
        dataset = tf.data.TFRecordDataset(filenames)

    if 'test' in channel_name:
        dataset = dataset.map(_dataset_parser_with_slide)
    else:
        dataset = dataset.repeat(epochs)
        dataset = dataset.map(_dataset_parser)

    if 'train' in channel_name:
        # Ensure that the capacity is sufficiently large to provide good random shuffling.
        buffer_size = int(
            NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * 0.4) + 3 * batch_size
        dataset = dataset.shuffle(buffer_size=buffer_size)

    # Batch it up (only for train and valid)
    if 'test' not in channel_name:
        dataset = dataset.batch(batch_size, drop_remainder=True)
        dataset = dataset.prefetch(10)

    return dataset
Beispiel #2
0
def get_dataset(batch_size, channel_name, dataset_bottleneck = False):
    from sagemaker_tensorflow import PipeModeDataset
    dataset = PipeModeDataset(channel_name, record_format='TFRecord').repeat()

    dataset = dataset.map(parse_image_function, num_parallel_calls=tf.data.experimental.AUTOTUNE)

    if dataset_bottleneck:
        dataset = dataset.map(data_augmentation, num_parallel_calls=tf.data.experimental.AUTOTUNE)

    dataset = dataset.batch(batch_size).prefetch(1)

    return dataset
Beispiel #3
0
def _input(epochs, batch_size, channel, channel_name):
    """Uses the tf.data input pipeline for CIFAR-10 dataset."""
    mode = args.data_config[channel_name]['TrainingInputMode']
    logging.info("Running {} in {} mode".format(channel_name, mode))

    if mode == 'Pipe':
        from sagemaker_tensorflow import PipeModeDataset
        dataset = PipeModeDataset(channel=channel_name,
                                  record_format='TFRecord')
    else:
        filenames = _get_filenames(channel_name, channel)
        dataset = tf.data.TFRecordDataset(filenames)

    # Repeat infinitely.
    dataset = dataset.repeat()
    dataset = dataset.prefetch(10)

    # Parse records.
    dataset = dataset.map(_dataset_parser, num_parallel_calls=10)

    # Potentially shuffle records.
    if channel_name == 'train':
        # Ensure that the capacity is sufficiently large to provide good random shuffling.
        buffer_size = int(
            NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * 0.4) + 3 * batch_size
        dataset = dataset.shuffle(buffer_size=buffer_size)

    # Batch it up.
    dataset = dataset.batch(batch_size, drop_remainder=True)
    iterator = tf.compat.v1.data.make_one_shot_iterator(dataset)
    image_batch, label_batch = iterator.get_next()

    return {INPUT_TENSOR_NAME: image_batch}, label_batch
    def load_tfrecords_pipemode_dataset(self):
        """
        STREAM dataset saved under the path "pipemode_SUBSET".

        Assumes a specific structure of tf records. Namely:
            "X" - flattened 1-dim length 60
            "y" - 1-dim length 20
            "seq_lens" - scalar
        Parameters
        ----------
        example_proto
            Pointer to a TFRecord
        Returns
        -------
        tf.data.Dataset-like SageMaker PipeModeDataset
            Pointer to k:v dictionary where value is the tensor. Keys: X, y, seq_lens
        """

        if self.subset in ["train", "validation", "test"]:

            dataset = PipeModeDataset(channel="pipemode_" + self.subset,
                                      record_format="TFRecord")
            # Process individual samples from tfrecords to rank 1-3 tensors
            return dataset.map(
                lambda x: self.example_to_features(x, self.keys_to_features))

        else:
            raise ValueError("Invalid data subset '%s'" % self.subset)
def process_input(epochs, batch_size, channel, channel_name, data_config):

    mode = data_config[channel_name]['TrainingInputMode']
    filenames = _get_filenames(channel_name, channel)
    # Repeat infinitely.
    logging.info("Running {} in {} mode".format(channel_name, mode))
    if mode == 'Pipe':
        from sagemaker_tensorflow import PipeModeDataset
        dataset = PipeModeDataset(channel=channel_name,
                                  record_format='TFRecord')
    else:
        dataset = tf.data.TFRecordDataset(filenames)

    dataset = dataset.repeat()
    dataset = dataset.prefetch(10)

    # Parse records.
    dataset = dataset.map(_dataset_parser, num_parallel_calls=10)

    # Potentially shuffle records.
    if channel_name == 'train':
        # Ensure that the capacity is sufficiently large to provide good random
        # shuffling.
        buffer_size = int(
            NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * 0.4) + 3 * batch_size
        dataset = dataset.shuffle(buffer_size=buffer_size)

    # Batch it up.
    dataset = dataset.batch(batch_size, drop_remainder=True)
    return dataset
def test_csv():
    channel_dir = tempfile.mkdtemp()
    state_dir = tempfile.mkdtemp()
    epochs = 1
    channel_name = 'testchannel'
    write_config(channel_dir, 'testchannel')

    create_fifos(epochs, channel_dir, channel_name, input_file='test.csv')

    def parse(line):
        fields = tf.decode_csv(line, FIELD_DEFAULTS)
        features = dict(zip(COLUMNS, fields))
        return features

    with tf.Session() as sess:
        ds = PipeModeDataset(channel_name, pipe_dir=channel_dir, state_dir=state_dir, config_dir=channel_dir,
                             record_format='TextLine')
        ds = ds.map(parse)

        it = ds.make_one_shot_iterator()
        next = it.get_next()
        for i in range(100):
            d = sess.run(next)
            sys.stdout.flush()
            assert d == {str(i): i for i in range(100)}
    def _input_fn():
        def _read_and_decode(record):
            features = tf.parse_single_example(
                record,
                features={
                    'image_raw': tf.FixedLenFeature([], tf.string),
                    'label': tf.FixedLenFeature([], tf.int64),
                })

            image = tf.decode_raw(features['image_raw'], tf.uint8)
            image.set_shape([HEIGHT * WIDTH * DEPTH])
            image = tf.cast(image, tf.float32) * (1. / 255)
            label = tf.cast(features['label'], tf.int32)

            return {INPUT_TENSOR_NAME: image}, label

        ds = PipeModeDataset(channel, record_format='TFRecord')
        ds = ds.repeat()
        ds = ds.prefetch(batch_size)
        ds = ds.map(_read_and_decode, num_parallel_calls=NUM_PARALLEL_BATCHES)

        if channel == 'train':
            ds = ds.shuffle(buffer_size=batch_size)

        ds = ds.batch(batch_size, drop_remainder=True)
        ds = ds.make_one_shot_iterator().get_next()

        return ds
 def make_dataset(channel_name):
     ds = PipeModeDataset(channel_name, pipe_dir=channel_dir, state_dir=state_dir, config_dir=channel_dir)
     ds = ds.map(parse, num_parallel_calls=12)
     ds = ds.repeat(count=2)
     ds = ds.prefetch(3)
     ds = ds.batch(10)
     return ds
 def input_fn():
     ds = PipeModeDataset(channel_name, pipe_dir=channel_dir, state_dir=state_dir, config_dir=channel_dir)
     ds = ds.map(parse, num_parallel_calls=12)
     ds = ds.prefetch(3)
     ds = ds.batch(3)
     it = ds.make_one_shot_iterator()
     return it.get_next()
Beispiel #10
0
def _input_fn(channel):
    """Returns a Dataset which reads from a SageMaker PipeMode channel."""
    features = {
        'image_raw': tf.FixedLenFeature([], tf.string),
        'label': tf.FixedLenFeature([], tf.int64),
        'height': tf.FixedLenFeature([], tf.int64),
        'width': tf.FixedLenFeature([], tf.int64),
        'channels': tf.FixedLenFeature([], tf.int64)
    }

    def parse(record):
        parsed = tf.parse_single_example(record, features)

        image = tf.decode_raw(parsed['image_raw'], tf.uint8)
        image.set_shape([784])
        image = tf.cast(image, tf.float32) * (1. / 255)
        label = tf.cast(parsed['label'], tf.int32)
        return ({INPUT_TENSOR_NAME: image}, label)

    ds = PipeModeDataset(channel=channel, record_format='TFRecord')

    ds = ds.repeat(MAX_EPOCHS)
    ds = ds.prefetch(PREFETCH_SIZE)
    ds = ds.map(parse, num_parallel_calls=NUM_PARALLEL_BATCHES)
    ds = ds.batch(BATCH_SIZE)

    return ds
def _input(epochs, batch_size, channel, channel_name):

    filenames = get_filenames(channel_name, channel)
    # ----- 추가 부분 (PipeModeDataSet) -----
    #dataset = tf.data.TFRecordDataset(filenames)
    dataset = PipeModeDataset(channel=channel_name, record_format='TFRecord')    

    dataset = dataset.repeat(epochs)
    dataset = dataset.prefetch(10)

    # Parse records.
    dataset = dataset.map(
        _dataset_parser, num_parallel_calls=10)

    # Potentially shuffle records.
    if channel_name == 'train':
        # Ensure that the capacity is sufficiently large to provide good random
        # shuffling.
        buffer_size = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * 0.4) + 3 * batch_size
        dataset = dataset.shuffle(buffer_size=buffer_size)

    # Batch it up.
    dataset = dataset.batch(batch_size, drop_remainder=True)
    iterator = dataset.make_one_shot_iterator()
    image_batch, label_batch = iterator.get_next()

    return {INPUT_TENSOR_NAME: image_batch}, label_batch
Beispiel #12
0
def _input_fn(channel):
    """Returns a Dataset for reading from a SageMaker PipeMode channel."""
    features = {
        'label': tf.FixedLenFeature([], tf.int64),
        'feature': tf.FixedLenFeature([480], tf.int64)
    }

    def parse(record):
        parsed = tf.parse_single_example(record, features)

        data = tf.reshape(parsed['feature'], [160, 3])
        data = tf.cast(data, tf.float32)

        label = tf.cast(parsed['label'], tf.int32)

        return ({INPUT_TENSOR_NAME: data}, label)

    ds = PipeModeDataset(channel=channel, record_format='TFRecord')
    ds = ds.shuffle(SHUFFLE_BUFFER_SIZE)
    ds = ds.repeat(MAX_EPOCHS)
    ds = ds.prefetch(PREFETCH_SIZE)
    ds = ds.map(parse, num_parallel_calls=NUM_PARALLEL_BATCHES)
    ds = ds.batch(BATCH_SIZE)

    return ds
def _input(args, channel_name):
    try:
        mode_channel_name = channel_name + 'ing' if channel_name == 'train' else channel_name
        mode = args.data_config[mode_channel_name]['TrainingInputMode']
    except:
        mode = 'File'
    """Uses the tf.data input pipeline for dataset.
    Args:
        mode: Standard names for model modes (tf.estimators.ModeKeys).
        batch_size: The number of samples per batch of input requested.
    """
    filenames = get_filenames(args, channel_name)
    # Repeat infinitely.
    logging.info("Running {} in {} mode".format(channel_name, mode))
    if mode == 'Pipe':
        from sagemaker_tensorflow import PipeModeDataset
        dataset = PipeModeDataset(channel=channel_name,
                                  record_format='TFRecord')
    else:
        dataset = tf.data.TFRecordDataset(filenames)

    # Potentially shuffle records.
    if channel_name == 'train':
        # Ensure that the capacity is sufficiently large to provide good random
        # shuffling.
        dataset = dataset.map(_load_image_train,
                              num_parallel_calls=tf.data.experimental.AUTOTUNE)
        buffer_size = int(args.train_num_examples * 0.4) + 3 * args.BATCH_SIZE

        dataset = dataset.cache().shuffle(buffer_size=buffer_size).batch(
            args.BATCH_SIZE).repeat()

    elif channel_name == 'test':
        dataset = dataset.map(_load_image_test)

        for image, mask in dataset.take(1):
            sample_image, sample_mask = image, mask

        _img_save('sample_image.jpg', sample_image)
        _img_save('sample_mask.png', sample_mask)

        dataset = dataset.batch(args.BATCH_SIZE)

    dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
    return dataset
Beispiel #14
0
def _input(epochs, batch_size, channel, channel_name):
    mode = args.data_config[channel_name]['TrainingInputMode']
    """Uses the tf.data input pipeline for our dataset.
    Args:
        mode: Standard names for model modes (tf.estimators.ModeKeys).
        batch_size: The number of samples per batch of input requested.
    """
    logging.info("Running {} in {} mode for {} epochs".format(channel_name, mode, epochs))

    filenames = get_filenames(channel_name, channel)

    # Repeat infinitely.
    if mode == 'Pipe':
        from sagemaker_tensorflow import PipeModeDataset
        dataset = PipeModeDataset(channel=channel_name, record_format='TFRecord')
    else:
        dataset = tf.data.TFRecordDataset(filenames)

    dataset = dataset.repeat(epochs)
    dataset = dataset.prefetch(batch_size)

    # Parse records.
    dataset = dataset.map(_dataset_parser, num_parallel_calls=10)

    # Shuffle training records.
    if channel_name == 'train':
        # Ensure that the capacity is sufficiently large to provide good random
        # shuffling.
        buffer_size = args.num_train_samples // args.batch_size
        dataset = dataset.shuffle(buffer_size=buffer_size)

    # Batch it up.
    dataset = dataset.batch(batch_size, drop_remainder=True)

    if tf.version.VERSION[0] == '2':
        iterator = tf.compat.v1.data.make_one_shot_iterator(dataset)
    else:
        iterator = dataset.make_one_shot_iterator()
        
    features_batch, label_batch = iterator.get_next()
    
    if tf.version.VERSION[0] == '2':
        with tf.compat.v1.Session() as sess:
            logging.info('type of features_batch: {}, type of values: {}'.format(type(features_batch), 
                                                             type(features_batch)))
            logging.info('label_batch: {}'.format(label_batch))
            logging.info('type of label_batch: {}'.format(type(label_batch)))
    else:
        with tf.Session() as sess:
            logging.info('type of features_batch: {}, type of values: {}'.format(type(features_batch), 
                                                             type(features_batch)))
            logging.info('label_batch: {}'.format(label_batch))
            logging.info('type of label_batch: {}'.format(type(label_batch)))

    return {INPUT_TENSOR_NAME: features_batch}, label_batch
def _input(epochs, batch_size, channel, channel_name, hvd=None):

    # If Horovod, assign channel name using the horovod rank
    if hvd != None:
        channel_name = '{}_{}'.format(channel_name, hvd.local_rank())

    channel_input_dir = args.training_env['channel_input_dirs'][channel_name]

    mode = args.data_config[channel_name]['TrainingInputMode']
    """Uses the tf.data input pipeline for CIFAR-10 dataset.
    Args:
        mode: Standard names for model modes (tf.estimators.ModeKeys).
        batch_size: The number of samples per batch of input requested.
    """

    if mode == 'Pipe':
        from sagemaker_tensorflow import PipeModeDataset
        dataset = PipeModeDataset(channel=channel_name,
                                  record_format='TFRecord')  #, benchmark=True)
    else:
        filenames = get_filenames(channel_input_dir)
        print(f'DEBUG tfrecords : {filenames}')
        dataset = tf.data.TFRecordDataset(filenames)

    if 'train' in channel_name:
        dataset = dataset.repeat(epochs)
    else:
        dataset = dataset.repeat(20)

    # Parse records.
    dataset = dataset.map(_dataset_parser, num_parallel_calls=10)

    # Potentially shuffle records.
    #     if hvd == None and 'train' in channel_name:
    if 'train' in channel_name:
        # Ensure that the capacity is sufficiently large to provide good random
        # shuffling.
        buffer_size = int(
            NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * 0.4) + 3 * batch_size
        dataset = dataset.shuffle(buffer_size=buffer_size)

    # Batch it up.
    dataset = dataset.batch(batch_size, drop_remainder=True)
    dataset = dataset.prefetch(10)

    return dataset
def input_fn():
    features = {
        'data': tf.FixedLenFeature([], tf.string),
        'labels': tf.FixedLenFeature([], tf.int64),
    }

    def parse(record):
        parsed = tf.parse_single_example(record, features)
        return ({
            'data': tf.decode_raw(parsed['data'], tf.float64)
        }, parsed['labels'])

    ds = PipeModeDataset(config.channel)

    if config.epochs > 1:
        ds = ds.repeat(config.epochs)
    if config.prefetch_size > 0:
        ds = ds.prefetch(config.prefetch_size)
    ds = ds.map(parse, num_parallel_calls=config.parallel_transform_calls)
    ds = ds.batch(config.batch_size)
    return ds
def read_dataset(epochs, batch_size, channel, channel_name):
    mode = args.data_config[channel_name]["TrainingInputMode"]

    logging.info("Running {} in {} mode".format(channel_name, mode))
    if mode == "Pipe":
        from sagemaker_tensorflow import PipeModeDataset

        dataset = PipeModeDataset(channel=channel_name,
                                  record_format="TFRecord")
    else:
        filenames = [os.path.join(channel, channel_name + ".tfrecords")]
        dataset = tf.data.TFRecordDataset(filenames)

    image_feature_description = {
        "image": tf.io.FixedLenFeature([], tf.string),
        "label": tf.io.FixedLenFeature([], tf.int64),
    }

    def _parse_image_function(example_proto):
        # Parse the input tf.Example proto using the dictionary above.
        features = tf.io.parse_single_example(example_proto,
                                              image_feature_description)
        image = tf.io.decode_raw(features["image"], tf.uint8)
        image.set_shape([3 * 32 * 32])
        image = tf.reshape(image, [32, 32, 3])

        label = tf.cast(features["label"], tf.int32)
        label = tf.one_hot(label, 10)

        return image, label

    dataset = dataset.map(_parse_image_function, num_parallel_calls=10)
    dataset = dataset.prefetch(10)
    dataset = dataset.repeat(epochs)
    dataset = dataset.shuffle(buffer_size=10 * batch_size)
    dataset = dataset.batch(batch_size, drop_remainder=True)

    return dataset
def input_fn(filenames,
             channel='training',
             batch_size=32,
             num_epochs=1,
             perform_shuffle=False):
    print('Parsing', filenames)

    def decode_libsvm(line):
        #columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS)
        #features = dict(zip(CSV_COLUMNS, columns))
        #labels = features.pop(LABEL_COLUMN)
        columns = tf.string_split([line], ' ')
        labels = tf.string_to_number(columns.values[0], out_type=tf.float32)
        splits = tf.string_split(columns.values[1:], ':')
        id_vals = tf.reshape(splits.values, splits.dense_shape)
        feat_ids, feat_vals = tf.split(id_vals, num_or_size_splits=2, axis=1)
        feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32)
        feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32)
        #feat_ids = tf.reshape(feat_ids,shape=[-1,FLAGS.field_size])
        #for i in range(splits.dense_shape.eval()[0]):
        #    feat_ids.append(tf.string_to_number(splits.values[2*i], out_type=tf.int32))
        #    feat_vals.append(tf.string_to_number(splits.values[2*i+1]))
        #return tf.reshape(feat_ids,shape=[-1,field_size]), tf.reshape(feat_vals,shape=[-1,field_size]), labels
        return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels

    if FLAGS.pipe_mode == 0:
        # Extract lines from input files using the Dataset API, can pass one filename or filename list
        dataset = tf.data.TextLineDataset(filenames).map(
            decode_libsvm, num_parallel_calls=10).prefetch(
                500000)  # multi-thread pre-process then prefetch
        # Randomizes input using a window of 256 elements (read into memory)
        if perform_shuffle:
            dataset = dataset.shuffle(buffer_size=256)

        # epochs from blending together.
        dataset = dataset.repeat(num_epochs)
        #liangaws:注意如果是单机多GPU或者多CPU,这里的batch_size应设置为CPU或者GPU数量的倍数来充分利用算力。
        #liangaws:这里使用drop_remainder=True来把不够一个batch size的数据忽略
        dataset = dataset.batch(batch_size,
                                drop_remainder=True)  # Batch size to use
        #return dataset.make_one_shot_iterator()
        iterator = dataset.make_one_shot_iterator()
        batch_features, batch_labels = iterator.get_next()
        #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
        return batch_features, batch_labels

    else:
        print("-------enter into pipe mode branch!------------")
        dataset = PipeModeDataset(channel, record_format='TextLine')
        #liangaws: 在sagemaker PS训练方式下,每个训练实例只有一个worker,一个ps。所以这里使用host的数量其实等于worker的数量来对训练集shard。不需要对验证集进行shard。
        if channel == 'training':
            number_host = len(FLAGS.hosts)
            if number_host > 1:
                index = FLAGS.hosts.index(FLAGS.current_host)
                print("index is ", index)
                dataset = dataset.shard(number_host, index)

        if num_epochs > 1:
            dataset = dataset.repeat(num_epochs)

        dataset = dataset.prefetch(500000)
        dataset = dataset.map(decode_libsvm, num_parallel_calls=10)
        dataset = dataset.batch(batch_size, drop_remainder=True)
        return dataset
Beispiel #19
0
def input_fn(filenames='',
             channel='training',
             batch_size=32,
             num_epochs=1,
             perform_shuffle=False):
    print('Parsing', filenames)

    def decode_libsvm(line):
        #columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS)
        #features = dict(zip(CSV_COLUMNS, columns))
        #labels = features.pop(LABEL_COLUMN)
        columns = tf.string_split([line], ' ')
        labels = tf.string_to_number(columns.values[0], out_type=tf.float32)
        splits = tf.string_split(columns.values[1:], ':')
        id_vals = tf.reshape(splits.values, splits.dense_shape)
        feat_ids, feat_vals = tf.split(id_vals, num_or_size_splits=2, axis=1)
        feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32)
        feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32)
        #feat_ids = tf.reshape(feat_ids,shape=[-1,FLAGS.field_size])
        #for i in range(splits.dense_shape.eval()[0]):
        #    feat_ids.append(tf.string_to_number(splits.values[2*i], out_type=tf.int32))
        #    feat_vals.append(tf.string_to_number(splits.values[2*i+1]))
        #return tf.reshape(feat_ids,shape=[-1,field_size]), tf.reshape(feat_vals,shape=[-1,field_size]), labels
        return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels

    # Extract lines from input files using the Dataset API, can pass one filename or filename list
    print("pipe mode ", FLAGS.pipe_mode)
    if FLAGS.pipe_mode == 0:
        """
        dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(500000)    # multi-thread pre-process then prefetch
              
        # Randomizes input using a window of 256 elements (read into memory)
        if perform_shuffle:
            dataset = dataset.shuffle(buffer_size=256)

        # epochs from blending together.
        dataset = dataset.repeat(num_epochs)
        dataset = dataset.batch(batch_size, drop_remainder=True) # Batch size to use
        """

        dataset = tf.data.TextLineDataset(filenames)
        #liangaws: 这里假设Sagemaker用的是S3fullreplicate,也就是sagemaker会把每个channle的数据都在每个训练实例上复制一份。所在这里直接基于每个worker的rank来做shard。
        dataset = dataset.shard(hvd.size(), hvd.rank())

        dataset = dataset.map(decode_libsvm, num_parallel_calls=10)
        dataset = dataset.prefetch(
            500000)  # multi-thread pre-process then prefetch
        if perform_shuffle:
            dataset = dataset.shuffle(buffer_size=256)

        # epochs from blending together.
        if num_epochs > 1:
            dataset = dataset.repeat(num_epochs)

        dataset = dataset.batch(batch_size,
                                drop_remainder=True)  # Batch size to use

        #return dataset.make_one_shot_iterator()
        iterator = dataset.make_one_shot_iterator()
        batch_features, batch_labels = iterator.get_next()
        #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
        return batch_features, batch_labels

    else:
        print("-------enter into pipe mode branch!------------")
        dataset = PipeModeDataset(channel, record_format='TextLine')
        number_host = len(FLAGS.hosts)
        #liangaws: horovod + pipe mode下,如果每个训练实例有多个worker,需要每个worker对应一个不同的channel,因此建议每个channel中的数据集是提前经过切分好的。只要在多个训练实例上并且每个训练实例是多个worker进程的情况下,才需要对不同训练实例上的同一个channel的数据做shard。
        if number_host > 1 and hvd.size() > number_host:
            #liangaws: 在Sagemaker horovod方式下,发现current-host都是一样的。
            #index = FLAGS.hosts.index(FLAGS.current_host)
            index = hvd.rank() // FLAGS.worker_per_host
            dataset = dataset.shard(number_host, index)

        if num_epochs > 1:
            dataset = dataset.repeat(num_epochs)

        dataset = dataset.prefetch(500000)
        dataset = dataset.map(decode_libsvm, num_parallel_calls=10)
        dataset = dataset.batch(batch_size, drop_remainder=True)

        return dataset
    def parse(record):
        parsed = tf.parse_single_example(record, features)
        image = tf.decode_raw(parsed['image'], tf.uint8)
        image.set_shape([DEPTH * HEIGHT * WIDTH])
        image = tf.cast(image,  tf.float32)/255.0
        label = tf.cast(parsed['label'], tf.int32)
        return image, label
    
    ds = PipeModeDataset(channel='train', record_format='TFRecord')
    num_epochs = 10
    # This yields 40000 (training images)/64 (batch_size) * 10 (epoch) = 6250 batches (steps)
    # Tensorflow dataset raises tf.errors.OutOfRangeError when all the batches are fed as described in training-loop
    ds = ds.repeat(num_epochs) 
    ds = ds.prefetch(10)
    ds = ds.map(parse, num_parallel_calls=10)
    ds = ds.shuffle(buffer_size = 64) #larger than batch_size
    ds = ds.batch(batch_size = 64)
 
    iterator = ds.make_one_shot_iterator()
    itr_initializer = iterator.make_initializer(ds)
    image_batch, label_batch = iterator.get_next()
    
    # Set up PyTorch Neural Network and optimizer
    net = MLP().to(device)
    if is_distributed and use_cuda:
        # multi-machine multi-gpu case
        net = torch.nn.parallel.DistributedDataParallel(net)
    else:
        # single-machine multi-gpu case or single-machine or multi-machine cpu case
        net = torch.nn.DataParallel(net)