def deploy( obj, s3_model_location, num_instances, ec2_type, aws_tags, iam_role_arn, external_id, endpoint_name ): """ Command to deploy ML model(s) on SageMaker """ logger.info(ASCII_LOGO) logger.info("Started deployment on SageMaker ...\n") try: endpoint_name = api_cloud.deploy( dir=_config().sagify_module_dir, s3_model_location=s3_model_location, num_instances=num_instances, ec2_type=ec2_type, docker_tag=obj['docker_tag'], aws_role=iam_role_arn, external_id=external_id, tags=aws_tags, endpoint_name=endpoint_name ) logger.info("Model deployed to SageMaker successfully") logger.info("Endpoint name: {}".format(endpoint_name)) except ValueError as e: logger.info("{}".format(e)) sys.exit(-1)
def deploy(obj, dir, s3_model_location, model_name, num_instances, ec2_type, aws_tags, vpc_configs): """ Command to deploy ML model(s) on SageMaker """ logger.info(ASCII_LOGO) logger.info("Started deployment on SageMaker ...\n") try: endpoint_name = api_cloud.deploy(dir=dir, s3_model_location=s3_model_location, model_name=model_name, vpc_configs=vpc_configs, num_instances=num_instances, ec2_type=ec2_type, docker_tag=obj['docker_tag'], tags=aws_tags) logger.info("Model deployed to SageMaker successfully") logger.info("Endpoint name: {}".format(endpoint_name)) except ValueError as e: logger.info("{}".format(e)) sys.exit(-1)