def train(obj, input_s3_dir, output_s3_dir, hyperparams_file, ec2_type, volume_size, time_out, aws_tags, iam_role_arn, external_id, base_job_name, job_name, metric_names): """ Command to train ML model(s) on SageMaker """ logger.info(ASCII_LOGO) logger.info("Started training on SageMaker...\n") try: s3_model_location = api_cloud.train( dir=_config().sagify_module_dir, input_s3_dir=input_s3_dir, output_s3_dir=output_s3_dir, hyperparams_file=hyperparams_file, ec2_type=ec2_type, volume_size=volume_size, time_out=time_out, docker_tag=obj['docker_tag'], tags=aws_tags, aws_role=iam_role_arn, external_id=external_id, base_job_name=base_job_name, job_name=job_name, metric_names=[_val.strip() for _val in metric_names.split(',')] if metric_names else None) logger.info("Training on SageMaker succeeded") logger.info("Model S3 location: {}".format(s3_model_location)) except ValueError as e: logger.info("{}".format(e)) sys.exit(-1)
def train(obj, dir, job_name, input_s3_dir, output_s3_dir, hyperparams_file, ec2_type, volume_size, time_out, aws_tags): """ Command to train ML model(s) on SageMaker """ logger.info(ASCII_LOGO) logger.info("Started training on SageMaker...\n") try: s3_model_location = api_cloud.train(dir=dir, job_name=job_name, input_s3_dir=input_s3_dir, output_s3_dir=output_s3_dir, hyperparams_file=hyperparams_file, ec2_type=ec2_type, volume_size=volume_size, time_out=time_out, docker_tag=obj['docker_tag'], tags=aws_tags) logger.info("Training on SageMaker succeeded") logger.info("Model S3 location: {}".format(s3_model_location)) except ValueError as e: logger.info("{}".format(e)) sys.exit(-1)