Beispiel #1
0
def _cochlear_trim_sai_marginals(filename_and_indexes):
    try:
        filename, norm_segstart, norm_segend, audio_id, NAP_detail = filename_and_indexes
        sai_video_filename = '{}_sai_video_{}'.format(filename, NAP_detail)
        if os.path.isfile('{}.npy'.format(sai_video_filename)):
            return sai_video_filename

        if NAP_detail == 'high':
            try:
                NAP = utils.csv_to_array(filename + 'cochlear' + NAP_detail)
            except:
                NAP = brain.cochlear(filename,
                                     stride=1,
                                     rate=44100,
                                     apply_filter=0,
                                     suffix='cochlear' + NAP_detail)
        if NAP_detail == 'low':
            try:
                NAP = utils.csv_to_array(filename + 'cochlear' + NAP_detail)
            except:
                NAP = brain.cochlear(
                    filename,
                    stride=IO.NAP_STRIDE,
                    rate=IO.NAP_RATE,
                    apply_filter=0,
                    suffix='cochlear' + NAP_detail
                )  # Seems to work best, in particular when they are all the same.

        num_channels = NAP.shape[1]
        input_segment_width = 2048
        sai_params = CreateSAIParams(num_channels=num_channels,
                                     input_segment_width=input_segment_width,
                                     trigger_window_width=input_segment_width,
                                     sai_width=1024)

        sai = pysai.SAI(sai_params)

        NAP = utils.trim_right(NAP[np.int(np.rint(NAP.shape[0] *
                                                  norm_segstart)):np.
                                   int(np.rint(NAP.shape[0] * norm_segend))],
                               threshold=.05)
        sai_video = [
            np.copy(sai.RunSegment(input_segment.T))
            for input_segment in utils.chunks(NAP, input_segment_width)
        ]
        del NAP
        np.save(sai_video_filename,
                np.array([sai_rectangles(frame) for frame in sai_video]))
        return sai_video_filename

    except:
        print utils.print_exception(
            'Calculation SAI video failed for file {}, NAP detail {}'.format(
                filename, NAP_detail))
        return False
Beispiel #2
0
    def testInputSegmentWidthIsLargerThanBuffer(self):
        params = CreateSAIParams(num_channels=2,
                                 sai_width=10,
                                 input_segment_width=200,
                                 trigger_window_width=200)
        sai = pysai.SAI(params)

        params.trigger_window_width = params.input_segment_width // 10
        self.assertGreater(
            params.input_segment_width,
            params.num_triggers_per_frame * params.trigger_window_width)
        self.assertRaises(AssertionError, sai.Redesign, params)
Beispiel #3
0
    def testInputSegmentWidthSmallerThanTriggerWindow(self):
        """Tests small hop between segments."""
        num_channels = 1
        total_input_samples = 20
        period = 5
        full_input = CreatePulseTrain(num_channels, total_input_samples,
                                      period)

        num_frames = 4
        input_segment_width = total_input_samples // num_frames
        sai_params = CreateSAIParams(num_channels=num_channels,
                                     input_segment_width=input_segment_width,
                                     trigger_window_width=total_input_samples,
                                     sai_width=15)
        self.assertLess(sai_params.input_segment_width,
                        sai_params.trigger_window_width)
        sai_params.future_lags = 0  # Only compute past lags.

        self.assertGreaterEqual(period, input_segment_width)

        sai = pysai.SAI(sai_params)
        for i in range(num_frames):
            segment = (full_input[:, i * input_segment_width:(i + 1) *
                                  input_segment_width])
            sai_frame = sai.RunSegment(segment)

            print("Frame {}\nInput\n{}\nOutput\n{}".format(
                i, segment, sai_frame))

            self.assertNotEqual(np.abs(segment).sum(), 0)
            # Since the input segment is never all zero, there should always
            # be a peak at zero lag.
            sai_channel = sai_frame[0, :]
            self.assertTrue(HasPeakAt(sai_channel, len(sai_channel) - 1))

            if i == 0:
                # Since the pulse train period is larger than the input segment
                # size, the first input segment will only see a single impulse,
                # most of the SAI will be zero.
                np.testing.assert_allclose(sai_channel[:len(sai_channel) - 1],
                                           np.zeros(len(sai_channel) - 1),
                                           1e-9)

            if i == num_frames - 1:
                # By the last frame, the SAI's internal buffer will have
                # accumulated the full input signal, so the resulting image
                # should contain kPeriod peaks.
                for j in range(len(sai_channel) - 1, 0, -period):
                    self.assertTrue(HasPeakAt(sai_channel, j))
Beispiel #4
0
    def testInputWidthDoesntMatchInputSegmentWidth(self):
        num_channels = 2
        input_segment_width = 10
        segment = CreatePulseTrain(num_channels, input_segment_width, period=4)

        sai_width = 20
        expected_input_segment_width = input_segment_width - 1
        sai_params = CreateSAIParams(
            num_channels=num_channels,
            sai_width=sai_width,
            input_segment_width=expected_input_segment_width,
            trigger_window_width=sai_width + 1)
        self.assertNotEqual(sai_params.input_segment_width,
                            input_segment_width)
        sai = pysai.SAI(sai_params)
        self.assertRaises(AssertionError, sai.RunSegment, segment)
Beispiel #5
0
    def testMatchesMatlabOnBinauralData(self):
        test_name = "binaural_test"
        input_segment_width = 882
        num_channels = 71
        # The Matlab CARFAC output is transposed compared to the C++.
        input_segment = LoadMatrix(test_name + "-matlab-nap1.txt",
                                   input_segment_width,
                                   num_channels).transpose()

        sai_params = CreateSAIParams(num_channels=num_channels,
                                     input_segment_width=input_segment_width,
                                     trigger_window_width=input_segment_width,
                                     sai_width=500)
        sai = pysai.SAI(sai_params)
        sai_frame = sai.RunSegment(input_segment)
        expected_sai_frame = LoadMatrix(test_name + "-matlab-sai1.txt",
                                        num_channels, sai_params.sai_width)
        np.testing.assert_allclose(expected_sai_frame, sai_frame, rtol=1e-5)

        WriteMatrix(test_name + "-py-sai1.txt", sai_frame)
Beispiel #6
0
    def _RunMultiChannelPulseTrainTest(self, period, num_channels):
        input_segment_width = 38
        segment = CreatePulseTrain(num_channels, input_segment_width, period)

        sai_params = CreateSAIParams(num_channels=num_channels,
                                     input_segment_width=input_segment_width,
                                     trigger_window_width=input_segment_width,
                                     sai_width=15)
        sai_params.future_lags = 0  # Only compute past lags.

        sai = pysai.SAI(sai_params)
        sai_frame = sai.RunSegment(segment)

        # The output should have peaks at the same positions, regardless of
        # input phase.
        for i in range(num_channels):
            sai_channel = sai_frame[i, :]
            for j in range(len(sai_channel) - 1, 0, -period):
                print(i, j, sai_channel, HasPeakAt(sai_channel, j))
                self.assertTrue(HasPeakAt(sai_channel, j))

        print("Input\n{}\nOutput\n{}".format(segment, sai_frame))