def test_original_biased_nonlin_semi_nmf(self):
     auv = sio.loadmat(mat_file)
     u, v = auv['u'], auv['v']
     a = relu(u @ v)
     bias_v = np.vstack((v, np.ones((1, v.shape[1]))))
     old_loss = np_frobenius_norm(a, u @ v)
     
     a_ph = tf.placeholder(tf.float64, shape=a.shape)
     u_ph = tf.placeholder(tf.float64, shape=u.shape)
     bias_v_ph = tf.placeholder(tf.float64, shape=bias_v.shape)
     
     tf_bias_u, tf_v = nonlin_semi_nmf(a_ph, u_ph, bias_v_ph, use_bias=True, use_tf=True, num_calc_v=0)
     
     init = tf.global_variables_initializer()
     with tf.Session() as sess:
         init.run()
         
         start_time = time.time()
         _u, _bias_v = sess.run([tf_bias_u, tf_v], feed_dict={a_ph: a, u_ph: u, bias_v_ph: bias_v})
         end_time = time.time()
     
     duration = end_time - start_time
     _bias_u = np.hstack((_u, np.ones((_u.shape[0], 1))))
     new_loss = np_frobenius_norm(a, relu(_bias_u @ _bias_v))
     assert a.shape == (_bias_u @ _bias_v).shape
     assert new_loss < old_loss, "new loss should be less than old loss."
     print_format('TensorFlow', 'biased Nonlinear semi-NMF(NOT CALC v)', a, _bias_u, _bias_v, old_loss, new_loss,
                  duration)
Beispiel #2
0
    def test_np_not_calc_v_biased_nonlin_semi_nmf(self):
        auv = sio.loadmat(mat_file)
        a, u, v = auv['a'], auv['u'], auv['v']
        old_loss = np_frobenius_norm(a, u @ v)

        biased_u = np.hstack((u, np.ones((u.shape[0], 1))))
        start_time = time.time()

        biased_u, v = nonlin_semi_nmf(a,
                                      biased_u,
                                      v,
                                      use_bias=True,
                                      num_calc_v=0)

        end_time = time.time()
        duration = end_time - start_time

        bias_v = np.vstack((v, np.ones((1, v.shape[1]))))

        new_loss = np_frobenius_norm(a, relu(biased_u @ bias_v))
        assert a.shape == (biased_u @ bias_v).shape
        assert new_loss < old_loss, "new loss should be less than old loss."
        print('\n[Numpy]Solve biased Nonlinear semi-NMF(NOT CALCULATE v)\n\t'
              'old loss {0}\n\t'
              'new loss {1}\n\t'
              'process duration {2}'.format(old_loss, new_loss, duration))
 def test_np_not_calc_v_vanilla_nonlin_semi_nmf(self):
     a = np.random.uniform(0., 1., size=(100, 100))
     u = np.random.uniform(0., 1., size=(100, 300))
     v = np.random.uniform(-1., 1., size=(300, 100))
     old_loss = np_frobenius_norm(a, u @ v)
     
     start_time = time.time()
     
     u, v = nonlin_semi_nmf(a, u, v, use_bias=False, num_calc_v=0)
     assert np.min(u) > 0, np.min(u)
     
     end_time = time.time()
     duration = end_time - start_time
     
     new_loss = np_frobenius_norm(a, relu(u @ v))
     assert a.shape == (u @ v).shape
     assert new_loss < old_loss, "new loss should be less than old loss."
     print_format('Numpy', 'Nonlinear semi-NMF(NOT CALCULATE v)', a, u, v, old_loss, new_loss, duration)
Beispiel #4
0
    def test_np_not_calc_v_vanilla_nonlin_semi_nmf(self):
        auv = sio.loadmat(mat_file)
        a, u, v = auv['a'], auv['u'], auv['v']
        old_loss = np_frobenius_norm(a, u @ v)

        start_time = time.time()

        u, v = nonlin_semi_nmf(a, u, v, use_bias=False, num_calc_v=0)

        end_time = time.time()
        duration = end_time - start_time

        new_loss = np_frobenius_norm(a, relu(u @ v))
        assert a.shape == (u @ v).shape
        assert new_loss < old_loss, "new loss should be less than old loss."
        print('\n[Numpy]Solve Nonlinear semi-NMF(NOT CALCULATE v)\n\t'
              'old loss {0}\n\t'
              'new loss {1}\n\t'
              'process duration {2}'.format(old_loss, new_loss, duration))
 def test_np_not_calc_v_biased_nonlin_semi_nmf(self):
     a = np.random.uniform(0., 1., size=(100, 100))
     u = np.random.uniform(0., 1., size=(100, 300))
     v = np.random.uniform(-1., 1., size=(300, 100))
     old_loss = np_frobenius_norm(a, u @ v)
     bias_v = np.vstack((v, np.ones((1, v.shape[1]))))
     
     start_time = time.time()
     
     u, bias_v = nonlin_semi_nmf(a, u, bias_v, use_bias=True, num_calc_v=0)
     assert np.min(u) > 0, np.min(u)
     
     end_time = time.time()
     duration = end_time - start_time
     
     bias_u = np.hstack((u, np.ones((u.shape[0], 1))))
     
     new_loss = np_frobenius_norm(a, relu(bias_u @ bias_v))
     assert a.shape == (bias_u @ bias_v).shape
     assert new_loss < old_loss, "new loss should be less than old loss."
     print_format('Numpy', 'biased Nonlinear semi-NMF(NOT CALC v)', a, bias_u, bias_v, old_loss, new_loss, duration)
Beispiel #6
0
    def test_tf_not_calc_v_biased_nonlin_semi_nmf(self):
        auv = sio.loadmat(mat_file)
        a, u, v = auv['a'], auv['u'], auv['v']
        bias_u = np.hstack((u, np.ones((u.shape[0], 1))))
        old_loss = np_frobenius_norm(a, u @ v)

        a_ph = tf.placeholder(tf.float64, shape=a.shape)
        bias_u_ph = tf.placeholder(tf.float64, shape=bias_u.shape)
        v_ph = tf.placeholder(tf.float64, shape=v.shape)

        tf_bias_u, tf_v = nonlin_semi_nmf(a_ph,
                                          bias_u_ph,
                                          v_ph,
                                          num_calc_v=0,
                                          use_bias=True,
                                          use_tf=True)

        init = tf.global_variables_initializer()
        with tf.Session() as sess:
            init.run()

            start_time = time.time()
            _bias_u, _v = sess.run([tf_bias_u, tf_v],
                                   feed_dict={
                                       a_ph: a,
                                       bias_u_ph: bias_u,
                                       v_ph: v
                                   })
            end_time = time.time()

        duration = end_time - start_time
        _bias_v = np.vstack((_v, np.ones((1, v.shape[1]))))
        new_loss = np_frobenius_norm(a, relu(_bias_u @ _bias_v))
        assert a.shape == (_bias_u @ _bias_v).shape
        assert new_loss < old_loss, "new loss should be less than old loss."
        print(
            '\n[TensorFlow]Solve biased Nonlinear semi-NMF(NOT CALCULATE v)\n\t'
            'old loss {0}\n\t'
            'new loss {1}\n\t'
            'process duration {2}'.format(old_loss, new_loss, duration))