Beispiel #1
0
def strip_short(s, minsize=3):
    """Remove words with length lesser than `minsize` from `s`.

    Parameters
    ----------
    s : str
    minsize : int, optional

    Returns
    -------
    str
        Unicode string without short words.

    Examples
    --------
    >>> from samenvattr.parsing.preprocessing import strip_short
    >>> strip_short("salut les amis du 59")
    u'salut les amis'
    >>>
    >>> strip_short("one two three four five six seven eight nine ten", minsize=5)
    u'three seven eight'

    """
    s = utils.to_unicode(s)
    return " ".join(e for e in s.split() if len(e) >= minsize)
Beispiel #2
0
def strip_non_alphanum(s):
    """Remove non-alphabetic characters from `s` using :const:`~samenvattr.parsing.preprocessing.RE_NONALPHA`.

    Parameters
    ----------
    s : str

    Returns
    -------
    str
        Unicode string with alphabetic characters only.

    Notes
    -----
    Word characters - alphanumeric & underscore.

    Examples
    --------
    >>> from samenvattr.parsing.preprocessing import strip_non_alphanum
    >>> strip_non_alphanum("if-you#can%read$this&then@this#method^works")
    u'if you can read this then this method works'

    """
    s = utils.to_unicode(s)
    return RE_NONALPHA.sub(" ", s)
Beispiel #3
0
 def load_from_text(fname):
     """
     Load a previously stored Dictionary from a text file.
     Mirror function to `save_as_text`.
     """
     result = Dictionary()
     with utils.smart_open(fname) as f:
         for lineno, line in enumerate(f):
             line = utils.to_unicode(line)
             if lineno == 0:
                 if line.strip().isdigit():
                     # Older versions of save_as_text may not write num_docs on first line.
                     result.num_docs = int(line.strip())
                     continue
                 else:
                     logging.warning(
                         "Text does not contain num_docs on the first line."
                     )
             try:
                 wordid, word, docfreq = line[:-1].split('\t')
             except Exception:
                 raise ValueError("invalid line in dictionary file %s: %s" %
                                  (fname, line.strip()))
             wordid = int(wordid)
             if word in result.token2id:
                 raise KeyError(
                     'token %s is defined as ID %d and as ID %d' %
                     (word, wordid, result.token2id[word]))
             result.token2id[word] = wordid
             result.dfs[wordid] = int(docfreq)
     return result
    def test_keywords_runs(self):
        text = self._get_text_from_test_data("mihalcea_tarau.txt")

        kwds = keywords(text)
        self.assertTrue(len(kwds.splitlines()))

        kwds_u = keywords(utils.to_unicode(text))
        self.assertTrue(len(kwds_u.splitlines()))

        kwds_lst = keywords(text, split=True)
        self.assertTrue(len(kwds_lst))
    def test_repeated_keywords(self):
        text = self._get_text_from_test_data("testrepeatedkeywords.txt")

        kwds = keywords(text)
        self.assertTrue(len(kwds.splitlines()))

        kwds_u = keywords(utils.to_unicode(text))
        self.assertTrue(len(kwds_u.splitlines()))

        kwds_lst = keywords(text, split=True)
        self.assertTrue(len(kwds_lst))
Beispiel #6
0
    def __iter__(self):
        """
        Iteratively yield vectors from the underlying file, in the format (row_no, vector),
        where vector is a list of (col_no, value) 2-tuples.

        Note that the total number of vectors returned is always equal to the
        number of rows specified in the header; empty documents are inserted and
        yielded where appropriate, even if they are not explicitly stored in the
        Matrix Market file.
        """
        with utils.file_or_filename(self.input) as lines:
            self.skip_headers(lines)

            previd = -1
            for line in lines:
                docid, termid, val = utils.to_unicode(
                    line).split()  # needed for python3
                if not self.transposed:
                    termid, docid = docid, termid
                # -1 because matrix market indexes are 1-based => convert to 0-based
                docid, termid, val = int(docid) - 1, int(termid) - 1, float(
                    val)
                assert previd <= docid, "matrix columns must come in ascending order"
                if docid != previd:
                    # change of document: return the document read so far (its id is prevId)
                    if previd >= 0:
                        yield previd, document  # noqa:F821

                    # return implicit (empty) documents between previous id and new id
                    # too, to keep consistent document numbering and corpus length
                    for previd in range(previd + 1, docid):
                        yield previd, []

                    # from now on start adding fields to a new document, with a new id
                    previd = docid
                    document = []

                document.append((
                    termid,
                    val,
                ))  # add another field to the current document

        # handle the last document, as a special case
        if previd >= 0:
            yield previd, document

        # return empty documents between the last explicit document and the number
        # of documents as specified in the header
        for previd in range(previd + 1, self.num_docs):
            yield previd, []
Beispiel #7
0
    def __init__(self, input, transposed=True):
        """
        Initialize the matrix reader.

        The `input` refers to a file on local filesystem, which is expected to
        be in the sparse (coordinate) Matrix Market format. Documents are assumed
        to be rows of the matrix (and document features are columns).

        `input` is either a string (file path) or a file-like object that supports
        `seek()` (e.g. gzip.GzipFile, bz2.BZ2File). File-like objects are not closed automatically.
        """
        logger.info("initializing corpus reader from %s", input)
        self.input, self.transposed = input, transposed
        with utils.file_or_filename(self.input) as lines:
            try:
                header = utils.to_unicode(next(lines)).strip()
                if not header.lower().startswith(
                        '%%matrixmarket matrix coordinate real general'):
                    raise ValueError(
                        "File %s not in Matrix Market format with coordinate real general; instead found: \n%s"
                        % (self.input, header))
            except StopIteration:
                pass

            self.num_docs = self.num_terms = self.num_nnz = 0
            for lineno, line in enumerate(lines):
                line = utils.to_unicode(line)
                if not line.startswith('%'):
                    self.num_docs, self.num_terms, self.num_nnz = (
                        int(x) for x in line.split())
                    if not self.transposed:
                        self.num_docs, self.num_terms = self.num_terms, self.num_docs
                    break

        logger.info(
            "accepted corpus with %i documents, %i features, %i non-zero entries",
            self.num_docs, self.num_terms, self.num_nnz)
Beispiel #8
0
    def from_corpus(corpus, id2word=None):
        """
        Create Dictionary from an existing corpus. This can be useful if you only
        have a term-document BOW matrix (represented by `corpus`), but not the
        original text corpus.

        This will scan the term-document count matrix for all word ids that
        appear in it, then construct and return Dictionary which maps each
        `word_id -> id2word[word_id]`.

        `id2word` is an optional dictionary that maps the `word_id` to a token. In
        case `id2word` isn't specified the mapping `id2word[word_id] = str(word_id)`
        will be used.
        """

        result = Dictionary()
        max_id = -1
        for docno, document in enumerate(corpus):
            if docno % 10000 == 0:
                logger.info("adding document #%i to %s", docno, result)
            result.num_docs += 1
            result.num_nnz += len(document)
            for wordid, word_freq in document:
                max_id = max(wordid, max_id)
                result.num_pos += word_freq
                result.dfs[wordid] = result.dfs.get(wordid, 0) + 1

        if id2word is None:
            # make sure length(result) == get_max_id(corpus) + 1
            result.token2id = {str(i): i for i in range(max_id + 1)}
        else:
            # id=>word mapping given: simply copy it
            result.token2id = {
                utils.to_unicode(token): idx
                for idx, token in id2word.items()
            }
        for idx in result.token2id.values():
            # make sure all token ids have a valid `dfs` entry
            result.dfs[idx] = result.dfs.get(idx, 0)

        logger.info("built %s from %i documents (total %i corpus positions)",
                    result, result.num_docs, result.num_pos)
        return result
Beispiel #9
0
def remove_stopwords(s):
    """Remove :const:`~samenvattr.parsing.preprocessing.STOPWORDS` from `s`.

    Parameters
    ----------
    s : str

    Returns
    -------
    str
        Unicode string without :const:`~samenvattr.parsing.preprocessing.STOPWORDS`.

    Examples
    --------
    >>> from samenvattr.parsing.preprocessing import remove_stopwords
    >>> remove_stopwords("Better late than never, but better never late.")
    u'Better late never, better late.'

    """
    s = utils.to_unicode(s)
    return " ".join(w for w in s.split() if w not in STOPWORDS)
Beispiel #10
0
def strip_tags(s):
    """Remove tags from `s` using :const:`~samenvattr.parsing.preprocessing.RE_TAGS`.

    Parameters
    ----------
    s : str

    Returns
    -------
    str
        Unicode string without tags.

    Examples
    --------
    >>> from samenvattr.parsing.preprocessing import strip_tags
    >>> strip_tags("<i>Hello</i> <b>World</b>!")
    u'Hello World!'

    """
    s = utils.to_unicode(s)
    return RE_TAGS.sub("", s)
Beispiel #11
0
def strip_punctuation(s):
    """Replace punctuation characters with spaces in `s` using :const:`~samenvattr.parsing.preprocessing.RE_PUNCT`.

    Parameters
    ----------
    s : str

    Returns
    -------
    str
        Unicode string without punctuation characters.

    Examples
    --------
    >>> from samenvattr.parsing.preprocessing import strip_punctuation
    >>> strip_punctuation("A semicolon is a stronger break than a comma, but not as much as a full stop!")
    u'A semicolon is a stronger break than a comma  but not as much as a full stop '

    """
    s = utils.to_unicode(s)
    return RE_PUNCT.sub(" ", s)
Beispiel #12
0
def strip_numeric(s):
    """Remove digits from `s` using :const:`~samenvattr.parsing.preprocessing.RE_NUMERIC`.

    Parameters
    ----------
    s : str

    Returns
    -------
    str
        Unicode  string without digits.

    Examples
    --------
    >>> from samenvattr.parsing.preprocessing import strip_numeric
    >>> strip_numeric("0text24samenvattr365test")
    u'textsamenvattrtest'

    """
    s = utils.to_unicode(s)
    return RE_NUMERIC.sub("", s)
Beispiel #13
0
def preprocess_string(s, filters=DEFAULT_FILTERS):
    """Apply list of chosen filters to `s`.

    Default list of filters:

    * :func:`~samenvattr.parsing.preprocessing.strip_tags`,
    * :func:`~samenvattr.parsing.preprocessing.strip_punctuation`,
    * :func:`~samenvattr.parsing.preprocessing.strip_multiple_whitespaces`,
    * :func:`~samenvattr.parsing.preprocessing.strip_numeric`,
    * :func:`~samenvattr.parsing.preprocessing.remove_stopwords`,
    * :func:`~samenvattr.parsing.preprocessing.strip_short`,
    * :func:`~samenvattr.parsing.preprocessing.stem_text`.

    Parameters
    ----------
    s : str
    filters: list of functions, optional

    Returns
    -------
    list of str
        Processed strings (cleaned).

    Examples
    --------
    >>> from samenvattr.parsing.preprocessing import preprocess_string
    >>> preprocess_string("<i>Hel 9lo</i> <b>Wo9 rld</b>! Th3     weather_is really g00d today, isn't it?")
    [u'hel', u'rld', u'weather', u'todai', u'isn']
    >>>
    >>> s = "<i>Hel 9lo</i> <b>Wo9 rld</b>! Th3     weather_is really g00d today, isn't it?"
    >>> CUSTOM_FILTERS = [lambda x: x.lower(), strip_tags, strip_punctuation]
    >>> preprocess_string(s, CUSTOM_FILTERS)
    [u'hel', u'9lo', u'wo9', u'rld', u'th3', u'weather', u'is', u'really', u'g00d', u'today', u'isn', u't', u'it']

    """
    s = utils.to_unicode(s)
    for f in filters:
        s = f(s)
    return s.split()
Beispiel #14
0
def stem_text(text):
    """Transform `s` into lowercase and stem it.

    Parameters
    ----------
    text : str

    Returns
    -------
    str
        Unicode lowercased and porter-stemmed version of string `text`.

    Examples
    --------
    >>> from samenvattr.parsing.preprocessing import stem_text
    >>> stem_text("While it is quite useful to be able to search a large collection of documents almost instantly.")
    u'while it is quit us to be abl to search a larg collect of document almost instantly.'

    """
    text = utils.to_unicode(text)
    p = PorterStemmer()
    return ' '.join(p.stem(word) for word in text.split())
Beispiel #15
0
def split_alphanum(s):
    """Add spaces between digits & letters in `s` using :const:`~samenvattr.parsing.preprocessing.RE_AL_NUM`.

    Parameters
    ----------
    s : str

    Returns
    -------
    str
        Unicode string with spaces between digits & letters.

    Examples
    --------
    >>> from samenvattr.parsing.preprocessing import split_alphanum
    >>> split_alphanum("24.0hours7 days365 a1b2c3")
    u'24.0 hours 7 days 365 a 1 b 2 c 3'

    """
    s = utils.to_unicode(s)
    s = RE_AL_NUM.sub(r"\1 \2", s)
    return RE_NUM_AL.sub(r"\1 \2", s)
Beispiel #16
0
def strip_multiple_whitespaces(s):
    r"""Remove repeating whitespace characters (spaces, tabs, line breaks) from `s`
    and turns tabs & line breaks into spaces using :const:`~samenvattr.parsing.preprocessing.RE_WHITESPACE`.

    Parameters
    ----------
    s : str

    Returns
    -------
    str
        Unicode string without repeating in a row whitespace characters.

    Examples
    --------
    >>> from samenvattr.parsing.preprocessing import strip_multiple_whitespaces
    >>> strip_multiple_whitespaces("salut" + '\r' + " les" + '\n' + "         loulous!")
    u'salut les loulous!'

    """
    s = utils.to_unicode(s)
    return RE_WHITESPACE.sub(" ", s)
    def test_mz_keywords(self):
        pre_path = os.path.join(os.path.dirname(__file__), 'test_data')

        with utils.smart_open(os.path.join(pre_path,
                                           "head500.noblanks.cor")) as f:
            text = utils.to_unicode(f.read())
        text = u' '.join(text.split()[:10240])
        kwds = mz_keywords(text)
        self.assertTrue(kwds.startswith('autism'))
        self.assertTrue(kwds.endswith('uk'))
        self.assertTrue(len(kwds.splitlines()))

        kwds_lst = mz_keywords(text, split=True)
        self.assertTrue(len(kwds_lst))
        # Automatic thresholding selects words with n_blocks / n_blocks+1
        # bits of entropy. For this text, n_blocks=10
        n_blocks = 10.
        kwds_auto = mz_keywords(text,
                                scores=True,
                                weighted=False,
                                threshold='auto')
        self.assertTrue(kwds_auto[-1][1] > (n_blocks / (n_blocks + 1.)))
Beispiel #18
0
def keywords(text,
             ratio=0.2,
             words=None,
             split=False,
             scores=False,
             pos_filter=('NN', 'JJ'),
             lemmatize=False,
             deacc=True):
    """Get most ranked words of provided text and/or its combinations.

    Parameters
    ----------

    text : str
        Input text.
    ratio : float, optional
        If no "words" option is selected, the number of sentences is reduced by the provided ratio,
        else, the ratio is ignored.
    words : int, optional
        Number of returned words.
    split : bool, optional
        Whether split keywords if True.
    scores : bool, optional
        Whether score of keyword.
    pos_filter : tuple, optional
        Part of speech filters.
    lemmatize : bool, optional
        If True - lemmatize words.
    deacc : bool, optional
        If True - remove accentuation.

    Returns
    -------
    result: list of (str, float)
        If `scores`, keywords with scores **OR**
    result: list of str
        If `split`, keywords only **OR**
    result: str
        Keywords, joined by endl.

    """
    # Gets a dict of word -> lemma
    text = to_unicode(text)
    tokens = _clean_text_by_word(text, deacc=deacc)
    split_text = list(_tokenize_by_word(text))

    # Creates the graph and adds the edges
    graph = _build_graph(_get_words_for_graph(tokens, pos_filter))
    _set_graph_edges(graph, tokens, split_text)
    del split_text  # It's no longer used

    _remove_unreachable_nodes(graph)

    # Ranks the tokens using the PageRank algorithm. Returns dict of lemma -> score
    pagerank_scores = _pagerank(graph)

    extracted_lemmas = _extract_tokens(graph.nodes(), pagerank_scores, ratio,
                                       words)

    # The results can be polluted by many variations of the same word
    if lemmatize:
        lemmas_to_word = {}
        for word, unit in iteritems(tokens):
            lemmas_to_word[unit.token] = [word]
    else:
        lemmas_to_word = _lemmas_to_words(tokens)

    keywords = _get_keywords_with_score(extracted_lemmas, lemmas_to_word)

    # text.split() to keep numbers and punctuation marks, so separeted concepts are not combined
    combined_keywords = _get_combined_keywords(keywords, text.split())

    return _format_results(keywords, combined_keywords, split, scores)
Beispiel #19
0
def mz_keywords(text, blocksize=1024, scores=False, split=False, weighted=True, threshold=0.0):
    """Extract keywords from text using the Montemurro and Zanette entropy algorithm. [1]_

    Parameters
    ----------
    text: str
        Document for summarization.
    blocksize: int, optional
        Size of blocks to use in analysis.
    scores: bool, optional
        Whether to return score with keywords.
    split: bool, optional
        Whether to return results as list.
    weighted: bool, optional
        Whether to weight scores by word frequency.
        False can useful for shorter texts, and allows automatic thresholding.
    threshold: float or 'auto', optional
        Minimum score for returned keywords,  'auto' calculates the threshold as n_blocks / (n_blocks + 1.0) + 1e-8,
        use 'auto' with `weighted=False`.

    Returns
    -------
    results: str
        newline separated keywords if `split` == False **OR**
    results: list(str)
        list of keywords if `scores` == False **OR**
    results: list(tuple(str, float))
        list of (keyword, score) tuples if `scores` == True

    Results are returned in descending order of score regardless of the format.

    Note
    ----
    This algorithm looks for keywords that contribute to the structure of the
    text on scales of `blocksize` words of larger. It is suitable for extracting
    keywords representing the major themes of long texts.

    References
    ----------
    .. [1] Marcello A Montemurro, Damian Zanette, "Towards the quantification of the semantic information encoded in
           written language". Advances in Complex Systems, Volume 13, Issue 2 (2010), pp. 135-153,
           DOI: 10.1142/S0219525910002530, https://arxiv.org/abs/0907.1558

    """
    text = to_unicode(text)
    words = [word for word in _tokenize_by_word(text)]
    vocab = sorted(set(words))
    word_counts = numpy.array(
        [
            [words[i:i + blocksize].count(word) for word in vocab]
            for i in range(0, len(words), blocksize)
        ]
    ).astype('d')
    n_blocks = word_counts.shape[0]
    totals = word_counts.sum(axis=0)
    n_words = totals.sum()
    p = word_counts / totals
    log_p = numpy.log2(p)
    h = numpy.nan_to_num(p * log_p).sum(axis=0)
    analytic = __analytic_entropy(blocksize, n_blocks, n_words)
    h += analytic(totals).astype('d')
    if weighted:
        h *= totals / n_words
    if threshold == 'auto':
        threshold = n_blocks / (n_blocks + 1.0) + 1.0e-8
    weights = [(word, score) for (word, score) in zip(vocab, h) if score > threshold]
    weights.sort(key=lambda x: -x[1])
    result = weights if scores else [word for (word, score) in weights]
    if not (scores or split):
        result = '\n'.join(result)
    return result