Beispiel #1
0
def generate_controlled_metadata(row, groups):
    """
    row  - row from input pandas.DataFrame object to convert to metadata
    cols - columns of input pandas.DataFrame to convert to metadata
    """
    metadata = {}
    # use the shared fields
    for col, val in row.iteritems():
        col = upload_key_format(col)
        ss_validator = SAMP_SERV_CONFIG['validators'].get(col, None)
        if ss_validator:
            if not pd.isnull(row[col]):
                idx = check_value_in_list(
                    col, [upload_key_format(g['value']) for g in groups],
                    return_idx=True)
                try:
                    val = float(row[col])
                except (ValueError, TypeError):
                    val = row[col]
                mtd = {"value": val}
                if idx is not None:
                    mtd, _ = parse_grouped_data(row, groups[idx])
                # verify against validator
                missing_fields = _find_missing_fields(mtd, ss_validator)
                for field, default in missing_fields.items():
                    mtd[field] = default
                metadata[col] = mtd

    return metadata
def format_input_file(df, columns_to_input_names, aliases, header_row_index):
    errors = []

    # change columns to upload format
    columns_to_input_names = {}
    for col_idx, col_name in enumerate(df.columns):
        try:
            renamed = upload_key_format(col_name)
            if renamed in columns_to_input_names:
                raise SampleContentError((
                    f"Duplicate column \"{renamed}\". \"{col_name}\" would overwrite a different column \"{columns_to_input_names[renamed]}\". "
                    "Rename your columns to be unique alphanumericaly, ignoring whitespace and case."
                ),
                                         key=col_name)
            columns_to_input_names[renamed] = col_name
        except SampleContentError as e:
            e.column = col_idx
            errors.append(e)

    df = df.rename(columns={
        columns_to_input_names[col]: col
        for col in columns_to_input_names
    })
    df.replace({n: None for n in NOOP_VALS}, inplace=True)

    map_aliases = {}
    for key, key_aliases in aliases.items():
        key = upload_key_format(key)
        for alias_key in key_aliases:
            alias_key = upload_key_format(alias_key)
            # check if alias_key in columns
            if alias_key in df.columns:
                # make sure that existing
                if key in df.columns:
                    # if key already exists, continue
                    continue
                map_aliases[alias_key] = key
                if alias_key in columns_to_input_names:
                    val = columns_to_input_names.pop(alias_key)
                    columns_to_input_names[key] = val

    if map_aliases:
        df = df.rename(columns=map_aliases)

    return df, columns_to_input_names, errors
Beispiel #3
0
def create_groups(col_config):
    groups = list()

    for col, rules in col_config.items():

        transformations = rules.get('transformations')

        if transformations:
            first_trans = transformations[0]
            transform = first_trans.get('transform')

            if transform == 'unit_measurement':
                parameters = first_trans.get('parameters')

                value = parameters[0]
                unit_key = parameters[1]
                unit_rules = col_config[unit_key]
                unit_transformations = unit_rules.get('transformations')

                if not unit_transformations:
                    unit_keys = [unit_key]
                    unit_aliases = unit_rules.get('aliases', [])
                    if unit_aliases:
                        unit_keys += unit_aliases

                    unit_keys = list(set([upload_key_format(unit) for unit in unit_keys]))

                else:
                    first_trans = unit_transformations[0]
                    parameters = first_trans.get('parameters', [col])
                    unit_keys = [upload_key_format(parameters[0])]

                for unit in unit_keys:
                    groups.append({'units': unit, 'value': value})
            elif transform == 'unit_measurement_fixed':
                parameters = first_trans.get('parameters')
                value = parameters[0]
                unit = 'str:{}'.format(parameters[1])

                groups.append({'units': unit, 'value': value})

    return groups
def validate_params(params):
    if not params.get('sample_file'):
        raise ValueError(f"sample_file argument required in params: {params}")
    if not params.get('workspace_name'):
        raise ValueError(
            f"workspace_name argument required in params: {params}")
    sample_file = params.get('sample_file')
    if not os.path.isfile(sample_file):
        # try prepending '/staging/' to file and check then
        if os.path.isfile(os.path.join('/staging', sample_file)):
            sample_file = os.path.join('/staging', sample_file)
        else:
            raise ValueError(f"input file {sample_file} does not exist.")
    if params.get('name_field'):
        try:
            upload_key_format(params.get('name_field'))
        except SampleContentError as e:
            raise ValueError("Invalid ID field in params: {e.message}")
    ws_name = params.get('workspace_name')
    return sample_file
Beispiel #5
0
def generate_user_metadata(row, cols, groups, unit_rules):
    """
    row        - row from input pandas.DataFrame object to convert to metadata
    cols       - columns of input pandas.DataFrame to conver to metadata
    groups     - list of dictionaries to group in same metadata field
    unit_rules - list of regexes that capture the units associated with all fields.
                 the first entry is used before the second which is used before the third and so on..
                 NOTE: empty list is valid input and results in no unit fields captured from regex.
    """
    # first we iterate through the groups
    metadata, used_cols = handle_groups_metadata(row, cols, groups)
    cols = list(set(cols) - used_cols)

    for col in cols:
        # col = col.lower( )
        if not pd.isnull(row[col]):
            # if there are column unit rules
            units = None
            if unit_rules:
                for unit_rule in unit_rules:
                    result = re.search(unit_rule, col)
                    if result:
                        # we assume the regex has capturing parantheses.
                        match = result.group(1)
                        units = match
                        # use only first match.
                        break
            # try to assing value as a float if possible
            try:
                val = float(row[col])
            except (ValueError, TypeError):
                val = row[col]
            metadata[upload_key_format(col)] = {"value": val}
            if units:
                metadata[upload_key_format(col)]["units"] = units

    return metadata
def import_samples_from_file(params, sample_url, workspace_url, username,
                             token, column_groups, date_columns,
                             column_unit_regex, input_sample_set,
                             header_row_index, aliases):
    """
    import samples from '.csv' or '.xls' files in SESAR  format
    """
    # verify inputs
    sample_file = validate_params(params)
    ws_name = params.get('workspace_name')
    df = load_file(sample_file, header_row_index, date_columns)
    df, columns_to_input_names, errors = format_input_file(
        df, {}, aliases, header_row_index)

    first_sample_idx = header_row_index + 1

    # TODO: Make sure to check all possible name fields, even when not parameterized
    if params.get('name_field'):
        name_field = upload_key_format(params.get('name_field'))
        if name_field not in list(df.columns):
            raise ValueError(
                f"The expected name field column \"{name_field}\" could not be found. "
                "Adjust your parameters or input such that the following are correct:\n"
                f"- File Format: {params.get('file_format')} (the format to which your sample data conforms)\n"
                f"- ID Field: {params.get('name_field','name')}\n (the header of the column containing your names)\n"
                f"- Headers Row: {params.get('header_row_index')} (the row # where column headers are located in your spreadsheet)"
            )
        # here we rename whatever the id field was/is to "id"
        columns_to_input_names["name"] = columns_to_input_names.pop(name_field)
        df.rename(columns={name_field: "name"}, inplace=True)

    if not errors:
        if params['file_format'].lower() in ['sesar', "enigma"]:
            if 'material' in df.columns:
                df.rename(columns={
                    "material":
                    params['file_format'].lower() + ":material"
                },
                          inplace=True)
                val = columns_to_input_names.pop("material")
                columns_to_input_names[params['file_format'].lower() +
                                       ":material"] = val
        if params['file_format'].lower() == "kbase":
            if 'material' in df.columns:
                df.rename(columns={"material": "sesar:material"}, inplace=True)
                val = columns_to_input_names.pop("material")
                columns_to_input_names["sesar:material"] = val

        acls = {
            "read": [],
            "write": [],
            "admin": [],
            "public_read": -1  # set to false (<0)
        }
        if params.get('share_within_workspace'):
            # query workspace for user permissions.
            acls = get_workspace_user_perms(workspace_url,
                                            params.get('workspace_id'), token,
                                            username, acls)
        groups = SAMP_SERV_CONFIG['validators']

        samples, existing_samples, produce_errors = _produce_samples(
            df, column_groups, column_unit_regex, sample_url, token,
            input_sample_set['samples'], columns_to_input_names,
            first_sample_idx)
        errors += produce_errors

    if params.get('prevalidate') and not errors:
        error_detail = validate_samples([s['sample'] for s in samples],
                                        sample_url, token)
        errors += [
            SampleContentError(e['message'],
                               sample_name=e['sample_name'],
                               node=e['node'],
                               key=e['key']) for e in error_detail
        ]

    if errors:
        saved_samples = []
        # Fill in missing location information for SamplesContentError(s)
        err_col_keys = {}
        err_key_indices = {}
        for col_idx, col_name in enumerate(df.columns):
            err_col_keys[col_idx] = col_name
            err_key_indices[col_name] = col_idx
            if col_name in columns_to_input_names and columns_to_input_names[
                    col_name] != col_name:
                err_key_indices[columns_to_input_names[col_name]] = col_idx

        err_row_sample_names = {}
        err_sample_name_indices = {}
        for relative_row_idx, row in df.iterrows():
            row_pos = first_sample_idx + relative_row_idx
            sample_name = row.get('name')
            err_sample_name_indices[sample_name] = row_pos
            err_row_sample_names[row_pos] = sample_name

        for e in errors:
            if e.column != None and e.key == None and e.column in err_col_keys:
                e.key = err_col_keys[e.column]
            if e.column == None and e.key != None and e.key in err_key_indices:
                e.column = err_key_indices[e.key]
            if e.row != None and e.sample_name == None and e.row in err_row_sample_names:
                e.sample_name = err_row_sample_names[e.row]
            if e.row == None and e.sample_name != None and e.sample_name in err_sample_name_indices:
                e.row = err_sample_name_indices[e.sample_name]
    else:
        saved_samples = _save_samples(samples, acls, sample_url, token)
        saved_samples += existing_samples

    return {
        "samples": saved_samples,
        "description": params.get('description')
    }, errors
Beispiel #7
0
def sample_set_to_output(sample_set, sample_url, token, output_file,
                         output_file_format):
    """"""
    def add_to_output(o, key_metadata, val):
        if key_metadata in o:
            o[key_metadata] += [
                "" for _ in range(
                    len(o['kbase_sample_id']) - 1 - len(o[key_metadata]))
            ] + [val]
        else:
            o[key_metadata] = [
                "" for _ in range(len(o['kbase_sample_id']) - 1)
            ] + [val]
        return o

    if output_file_format == "SESAR":
        groups = SESAR_mappings['groups']

    output = {"kbase_sample_id": [], "sample name": []}
    for samp_id in sample_set['samples']:
        sample = get_sample(samp_id, sample_url, token)
        output['kbase_sample_id'].append(sample['id'])
        output['sample name'].append(sample['name'])
        used_headers = set(['kbase_sample_id', 'name', 'sample name'])
        for node in sample['node_tree']:
            # get 'source_meta' information
            source_meta = node.get('source_meta', [])
            source_meta_key = {m['key']: m['skey'] for m in source_meta}
            for key_metadata in node['meta_controlled']:
                # get original input key
                upload_key = source_meta_key.get(key_metadata, key_metadata)
                if upload_key not in used_headers:
                    for key, val in node['meta_controlled'][
                            key_metadata].items():
                        if key == 'value':
                            output = add_to_output(output, upload_key, val)
                            used_headers.add(upload_key)
                        if key == 'units':
                            idx = check_value_in_list(key_metadata, [
                                upload_key_format(g['value']) for g in groups
                            ],
                                                      return_idx=True)
                            if idx is not None and not groups[idx][
                                    'units'].startswith('str:'):
                                output = add_to_output(output,
                                                       groups[idx]['units'],
                                                       val)
                                used_headers.add(groups[idx]['units'])

            for key_metadata in node['meta_user']:
                # get original input key
                upload_key = source_meta_key.get(key_metadata, key_metadata)
                if upload_key not in used_headers:
                    for key, val in node['meta_user'][key_metadata].items():
                        if key == 'value':
                            output = add_to_output(output, upload_key, val)
                            used_headers.add(upload_key)
                        if key == 'units':
                            idx = check_value_in_list(key_metadata, [
                                upload_key_format(g['value']) for g in groups
                            ],
                                                      return_idx=True)
                            if idx is not None and not groups[idx][
                                    'units'].startswith('str:'):
                                output = add_to_output(output,
                                                       groups[idx]['units'],
                                                       val)

    for key in output:
        output[key] += [
            ""
            for _ in range(len(output['kbase_sample_id']) - len(output[key]))
        ]

    df = pd.DataFrame.from_dict(output)

    def line_prepender(filename, line):
        with open(filename, 'r+') as f:
            content = f.read()
            f.seek(0, 0)
            f.write(line.rstrip('\r\n') + '\n' + content)

    df.to_csv(output_file, index=False)

    if output_file_format == "SESAR":
        line_prepender(output_file,
                       "Object Type:,Individual Sample,User Code:,")
def sample_set_to_output(sample_set, sample_url, token, output_file,
                         output_file_format):
    """"""
    def add_to_output(o, key_metadata, val):
        if key_metadata in o:
            o[key_metadata] += [
                "" for _ in range(
                    len(o['kbase_sample_id']) - 1 - len(o[key_metadata]))
            ] + [val]
        else:
            o[key_metadata] = [
                "" for _ in range(len(o['kbase_sample_id']) - 1)
            ] + [val]
        return o

    if output_file_format.lower() == "sesar":
        groups = SESAR_mappings['groups']
    else:
        raise ValueError(f"SESAR only file format supported for export")

    output = {"kbase_sample_id": [], "name": []}
    for samp_id in sample_set['samples']:
        sample = get_sample(samp_id, sample_url, token)
        output['kbase_sample_id'].append(sample['id'])
        # we need to check if there is another match in there.
        sample_name = sample['name']

        output['name'].append(sample_name)
        used_headers = set(['kbase_sample_id', 'name'])
        for node_idx, node in enumerate(sample['node_tree']):
            # check if node 'id' and sample 'name' are not the same
            if node['id'] != sample_name:
                output = add_to_output(output, f"alt_id_{node_idx}",
                                       node['id'])
            # get 'source_meta' information
            source_meta = node.get('source_meta', [])
            source_meta_key = {m['key']: m['skey'] for m in source_meta}
            for key_metadata in node['meta_controlled']:
                # get original input key
                upload_key = source_meta_key.get(key_metadata, key_metadata)
                if upload_key not in used_headers:
                    for key, val in node['meta_controlled'][
                            key_metadata].items():
                        if key == 'value':
                            output = add_to_output(output, upload_key, val)
                            used_headers.add(upload_key)
                        if key == 'units':
                            idx = check_value_in_list(key_metadata, [
                                upload_key_format(g['value']) for g in groups
                            ],
                                                      return_idx=True)
                            if idx is not None and not groups[idx][
                                    'units'].startswith('str:'):
                                output = add_to_output(output,
                                                       groups[idx]['units'],
                                                       val)
                                used_headers.add(groups[idx]['units'])

            for key_metadata in node['meta_user']:
                # get original input key
                upload_key = source_meta_key.get(key_metadata, key_metadata)
                if upload_key not in used_headers:
                    for key, val in node['meta_user'][key_metadata].items():
                        if key == 'value':
                            output = add_to_output(output, upload_key, val)
                            used_headers.add(upload_key)
                        if key == 'units':
                            idx = check_value_in_list(key_metadata, [
                                upload_key_format(g['value']) for g in groups
                            ],
                                                      return_idx=True)
                            if idx is not None and not groups[idx][
                                    'units'].startswith('str:'):
                                output = add_to_output(output,
                                                       groups[idx]['units'],
                                                       val)

    # add any missing lines to the end.
    for key in output:
        output[key] += [
            ""
            for _ in range(len(output['kbase_sample_id']) - len(output[key]))
        ]

    df = pd.DataFrame.from_dict(output)

    def line_prepender(filename, line):
        with open(filename, 'r+') as f:
            content = f.read()
            f.seek(0, 0)
            f.write(line.rstrip('\r\n') + '\n' + content)

    df.to_csv(output_file, index=False)

    if output_file_format.lower() == "sesar":
        line_prepender(output_file,
                       "Object Type:,Individual Sample,User Code:,")
Beispiel #9
0
def import_samples_from_file(params, sw_url, workspace_url, username, token,
                             column_mapping, column_groups, date_columns,
                             column_unit_regex, input_sample_set,
                             header_row_index):
    """
    import samples from '.csv' or '.xls' files in SESAR  format
    """
    # verify inputs
    sample_file = validate_params(params)
    ws_name = params.get('workspace_name')
    df = load_file(sample_file, header_row_index, date_columns)

    errors = []
    first_sample_idx = header_row_index + 1

    # change columns to upload format
    columns_to_input_names = {}
    for col_idx, col_name in enumerate(df.columns):
        try:
            renamed = upload_key_format(col_name)
            if renamed in columns_to_input_names:
                raise SampleContentError((
                    f"Duplicate column \"{renamed}\". \"{col_name}\" would overwrite a different column \"{columns_to_input_names[renamed]}\". "
                    "Rename your columns to be unique alphanumericaly, ignoring whitespace and case."
                ),
                                         key=col_name)
            columns_to_input_names[renamed] = col_name
        except SampleContentError as e:
            e.column = col_idx
            errors.append(e)

    df = df.rename(columns={
        columns_to_input_names[col]: col
        for col in columns_to_input_names
    })
    df.replace({n: None for n in NOOP_VALS}, inplace=True)

    #TODO: Make sure to check all possible ID fields, even when not parameterized
    if params.get('id_field'):
        id_field = upload_key_format(params.get('id_field'))
        if id_field not in list(df.columns):
            raise ValueError(
                f"The expected ID field column \"{id_field}\" could not be found. "
                "Adjust your parameters or input such that the following are correct:\n"
                f"- File Format: {params.get('file_format')} (the format to which your sample data conforms)\n"
                f"- ID Field: {params.get('id_field','id')}\n (the header of the column containing your IDs)\n"
                f"- Headers Row: {params.get('header_row_index')} (the row # where column headers are located in your spreadsheet)"
            )
        # here we rename whatever the id field was/is to "id"
        columns_to_input_names["id"] = columns_to_input_names.pop(id_field)
        df.rename(columns={id_field: "id"}, inplace=True)
        # remove "id" rename field from column mapping if exists
        if column_mapping:
            column_mapping = {
                key: val
                for key, val in column_mapping.items() if val != "id"
            }

    if not errors:
        if column_mapping:
            df = df.rename(columns=column_mapping)
        # redundant, even harmful if things get out of sync
        # verify_columns(df)
        for key in column_mapping:
            if key in columns_to_input_names:
                val = columns_to_input_names.pop(key)
                columns_to_input_names[column_mapping[key]] = val

        if params['file_format'].upper() in ['SESAR', "ENIGMA"]:
            if 'material' in df.columns:
                df.rename(columns={
                    "material":
                    params['file_format'].upper() + ":material"
                },
                          inplace=True)
                val = columns_to_input_names.pop("material")
                columns_to_input_names[params['file_format'].upper() +
                                       ":material"] = val
        if params['file_format'].upper() == "KBASE":
            if 'material' in df.columns:
                df.rename(columns={"material": "SESAR:material"}, inplace=True)
                val = columns_to_input_names.pop("material")
                columns_to_input_names["SESAR:material"] = val

        acls = {
            "read": [],
            "write": [],
            "admin": [],
            "public_read": -1  # set to false (<0)
        }
        if params.get('share_within_workspace'):
            # query workspace for user permissions.
            acls = get_workspace_user_perms(workspace_url,
                                            params.get('workspace_id'), token,
                                            username, acls)
        groups = SAMP_SERV_CONFIG['validators']

        cols = list(set(df.columns) - set(REGULATED_COLS))
        sample_url = get_sample_service_url(sw_url)
        samples, existing_samples, produce_errors = _produce_samples(
            df, cols, column_groups, column_unit_regex, sample_url, token,
            input_sample_set['samples'], columns_to_input_names,
            first_sample_idx)
        errors += produce_errors

    if params.get('prevalidate') and not errors:
        error_detail = validate_samples([s['sample'] for s in samples],
                                        sample_url, token)
        errors += [
            SampleContentError(e['message'],
                               sample_name=e['sample_name'],
                               node=e['node'],
                               key=e['key']) for e in error_detail
        ]

    if errors:
        saved_samples = []
        # Fill in missing location information for SamplesContentError(s)
        err_col_keys = {}
        err_key_indices = {}
        for col_idx, col_name in enumerate(df.columns):
            err_col_keys[col_idx] = col_name
            err_key_indices[col_name] = col_idx
            if col_name in columns_to_input_names and columns_to_input_names[
                    col_name] != col_name:
                err_key_indices[columns_to_input_names[col_name]] = col_idx

        err_row_sample_names = {}
        err_sample_name_indices = {}
        for relative_row_idx, row in df.iterrows():
            row_pos = first_sample_idx + relative_row_idx
            sample_name = row.get('id')
            err_sample_name_indices[sample_name] = row_pos
            err_row_sample_names[row_pos] = sample_name

        for e in errors:
            if e.column != None and e.key == None and e.column in err_col_keys:
                e.key = err_col_keys[e.column]
            if e.column == None and e.key != None and e.key in err_key_indices:
                e.column = err_key_indices[e.key]
            if e.row != None and e.sample_name == None and e.row in err_row_sample_names:
                e.sample_name = err_row_sample_names[e.row]
            if e.row == None and e.sample_name != None and e.sample_name in err_sample_name_indices:
                e.row = err_sample_name_indices[e.sample_name]
    else:
        saved_samples = _save_samples(samples, acls, sample_url, token)
        saved_samples += existing_samples

    return {
        "samples": saved_samples,
        "description": params.get('description')
    }, errors
Beispiel #10
0
def format_input_file(df, params, columns_to_input_names, aliases):
    # change columns to upload format
    columns_to_input_names = {}

    # set column names into 'upload_key_format'.
    for col_idx, col_name in enumerate(df.columns):
        renamed = upload_key_format(col_name)
        if renamed not in columns_to_input_names:
            columns_to_input_names[renamed] = col_name
        else:
            warnings.warn(
                SampleContentWarning((
                    f"Duplicate column \"{renamed}\". \"{col_name}\" would overwrite a different column \"{columns_to_input_names[renamed]}\". "
                    "Rename your columns to be unique alphanumericaly, ignoring whitespace and case."
                ),
                                     key=col_name,
                                     column=col_idx,
                                     severity='error'))

    df = df.rename(columns={
        columns_to_input_names[col]: col
        for col in columns_to_input_names
    })
    df.replace({n: None for n in NOOP_VALS}, inplace=True)

    # TODO: Make sure to check all possible name fields, even when not parameterized
    if params.get('name_field'):
        name_field = upload_key_format(params.get('name_field'))
        if name_field not in list(df.columns):
            raise ValueError(
                f"The expected name field column \"{name_field}\" could not be found. "
                "Adjust your parameters or input such that the following are correct:\n"
                f"- File Format: {params.get('file_format')} (the format to which your sample data conforms)\n"
                f"- ID Field: {params.get('name_field','name')}\n (the header of the column containing your names)\n"
                f"- Headers Row: {params.get('header_row_index')} (the row # where column headers are located in your spreadsheet)"
            )
        # here we rename whatever the id field was/is to "id"
        columns_to_input_names["name"] = columns_to_input_names.pop(name_field)
        df.rename(columns={name_field: "name"}, inplace=True)

    map_aliases = {}
    for key, key_aliases in aliases.items():
        key = upload_key_format(key)
        for alias_key in key_aliases:
            alias_key = upload_key_format(alias_key)
            # check if alias_key in columns
            if alias_key in df.columns:
                # make sure that existing
                if key in df.columns:
                    # if key already exists, continue
                    continue
                map_aliases[alias_key] = key
                if alias_key in columns_to_input_names:
                    val = columns_to_input_names.pop(alias_key)
                    columns_to_input_names[key] = val

    if map_aliases:
        df = df.rename(columns=map_aliases)

    file_format = params.get('file_format').lower()

    prefix_map = {}
    for col in df.columns:
        if ':' in col:
            continue
        # get prefixed versions of the field.
        fields = NON_PREFIX_TO_PREFIX.get(col, [])
        target_field = None
        for field in fields:
            # choose the format that fits if it exists.
            if field.split(":")[0] == file_format:
                target_field = field
                break
            else:
                if col in CORE_FIELDS:
                    target_field = col
                else:
                    target_field = field
        if target_field:
            prefix_map[col] = target_field
            if col in columns_to_input_names:
                val = columns_to_input_names.pop(col)
                columns_to_input_names[target_field] = val
    if prefix_map:
        df = df.rename(columns=prefix_map)

    return df, columns_to_input_names
Beispiel #11
0
def import_samples_from_file(params, sw_url, workspace_url, username, token,
                             column_mapping, column_groups, date_columns,
                             column_unit_regex, input_sample_set,
                             header_row_index):
    """
    import samples from '.csv' or '.xls' files in SESAR  format
    """
    # verify inputs
    sample_file = validate_params(params)
    ws_name = params.get('workspace_name')
    df = load_file(sample_file, header_row_index, date_columns)
    # change columns to upload format
    # TODO: make sure separate columns are not being renamed to the same thing
    columns_to_input_names = {upload_key_format(c): c for c in df.columns}
    df = df.rename(columns={c: upload_key_format(c) for c in df.columns})
    df.replace({n: None for n in NOOP_VALS}, inplace=True)

    if params.get('id_field'):
        id_field = upload_key_format(params['id_field'])
        if id_field in list(df.columns):
            # here we rename whatever the id field was/is to "id"
            columns_to_input_names["id"] = columns_to_input_names.pop(id_field)
            df.rename(columns={id_field: "id"}, inplace=True)
            # remove "id" rename field from column mapping if exists
            if column_mapping:
                column_mapping = {
                    key: val
                    for key, val in column_mapping.items() if val != "id"
                }
        else:
            raise ValueError(
                f"'{params['id_field']}' is not a column field in the input file."
            )
    else:
        print(
            f"No id_field argument present in params, proceeding with defaults."
        )

    if column_mapping:
        df = df.rename(columns=column_mapping)
    # redundant, even harmful if things get out of sync
    # verify_columns(df)
    for key in column_mapping:
        if key in columns_to_input_names:
            val = columns_to_input_names.pop(key)
            columns_to_input_names[column_mapping[key]] = val

    if params['file_format'].upper() in ['SESAR', "ENIGMA"]:
        if 'material' in df.columns:
            df.rename(columns={
                "material": params['file_format'].upper() + ":material"
            },
                      inplace=True)
            val = columns_to_input_names.pop("material")
            columns_to_input_names[params['file_format'].upper() +
                                   ":material"] = val
    if params['file_format'].upper() == "KBASE":
        if 'material' in df.columns:
            df.rename(columns={"material": "SESAR:material"}, inplace=True)
            val = columns_to_input_names.pop("material")
            columns_to_input_names["SESAR:material"] = val

    acls = {
        "read": [],
        "write": [],
        "admin": [],
        "public_read": -1  # set to false (<0)
    }
    if params.get('share_within_workspace'):
        # query workspace for user permissions.
        acls = get_workspace_user_perms(workspace_url,
                                        params.get('workspace_id'), token,
                                        username, acls)
    groups = SAMP_SERV_CONFIG['validators']

    cols = list(set(df.columns) - set(REGULATED_COLS))
    sample_url = get_sample_service_url(sw_url)
    samples, existing_samples = _produce_samples(df, cols, column_groups,
                                                 column_unit_regex, sample_url,
                                                 token,
                                                 input_sample_set['samples'],
                                                 columns_to_input_names)
    errors = {}
    if params.get('prevalidate'):
        errors = validate_samples([s['sample'] for s in samples], sample_url,
                                  token)
    if errors:
        saved_samples = []
    else:
        saved_samples = _save_samples(samples, acls, sample_url, token)
        saved_samples += existing_samples
    return {
        "samples": saved_samples,
        "description": params.get('description')
    }, errors