def testPrune(self):
        startId = (0, )
        minSplit = 20
        maxDepth = 5
        gamma = 0.05
        learner = PenaltyDecisionTree(minSplit=minSplit,
                                      maxDepth=maxDepth,
                                      gamma=gamma,
                                      pruning=False)

        trainX = self.X[100:, :]
        trainY = self.y[100:]
        testX = self.X[0:100, :]
        testY = self.y[0:100]

        argsortX = numpy.zeros(trainX.shape, numpy.int)
        for i in range(trainX.shape[1]):
            argsortX[:, i] = numpy.argsort(trainX[:, i])
            argsortX[:, i] = numpy.argsort(argsortX[:, i])

        learner.tree = DictTree()
        rootNode = DecisionNode(numpy.arange(trainX.shape[0]),
                                Util.mode(trainY))
        learner.tree.setVertex(startId, rootNode)
        learner.growTree(trainX, trainY, argsortX, startId)
        learner.shapeX = trainX.shape
        learner.predict(trainX, trainY)
        learner.computeAlphas()

        obj1 = learner.treeObjective(trainX, trainY)
        size1 = learner.tree.getNumVertices()

        #Now we'll prune
        learner.prune(trainX, trainY)

        obj2 = learner.treeObjective(trainX, trainY)
        size2 = learner.tree.getNumVertices()

        self.assertTrue(obj1 >= obj2)
        self.assertTrue(size1 >= size2)

        #Check there are no nodes with alpha>alphaThreshold
        for vertexId in learner.tree.getAllVertexIds():
            self.assertTrue(
                learner.tree.getVertex(vertexId).alpha <=
                learner.alphaThreshold)
 def testPrune(self): 
     startId = (0, )
     minSplit = 20
     maxDepth = 5
     gamma = 0.05
     learner = PenaltyDecisionTree(minSplit=minSplit, maxDepth=maxDepth, gamma=gamma, pruning=False) 
     
     trainX = self.X[100:, :]
     trainY = self.y[100:]
     testX = self.X[0:100, :]
     testY = self.y[0:100]    
     
     argsortX = numpy.zeros(trainX.shape, numpy.int)
     for i in range(trainX.shape[1]): 
         argsortX[:, i] = numpy.argsort(trainX[:, i])
         argsortX[:, i] = numpy.argsort(argsortX[:, i])
     
     learner.tree = DictTree()
     rootNode = DecisionNode(numpy.arange(trainX.shape[0]), Util.mode(trainY))
     learner.tree.setVertex(startId, rootNode)        
     learner.growTree(trainX, trainY, argsortX, startId)    
     learner.shapeX = trainX.shape 
     learner.predict(trainX, trainY)
     learner.computeAlphas()
     
     obj1 = learner.treeObjective(trainX, trainY)        
     size1 = learner.tree.getNumVertices()
     
     #Now we'll prune 
     learner.prune(trainX, trainY)
     
     obj2 = learner.treeObjective(trainX, trainY)
     size2 = learner.tree.getNumVertices()
     
     self.assertTrue(obj1 >= obj2)    
     self.assertTrue(size1 >= size2)        
     
     #Check there are no nodes with alpha>alphaThreshold 
     for vertexId in learner.tree.getAllVertexIds(): 
         self.assertTrue(learner.tree.getVertex(vertexId).alpha <= learner.alphaThreshold)
    def testComputeAlphas(self):
        minSplit = 20
        maxDepth = 3
        gamma = 0.1

        X, y = self.X, self.y

        testX = X[100:, :]
        testY = y[100:]
        X = X[0:100, :]
        y = y[0:100]

        learner = PenaltyDecisionTree(minSplit=minSplit,
                                      maxDepth=maxDepth,
                                      gamma=gamma,
                                      pruning=False)
        learner.learnModel(X, y)
        tree = learner.getTree()

        rootId = (0, )
        learner.tree.getVertex(rootId).setTestInds(numpy.arange(X.shape[0]))
        learner.predict(X, y)
        learner.computeAlphas()

        #See if the alpha values of the nodes are correct
        for vertexId in tree.getAllVertexIds():
            subtreeLeaves = tree.leaves(vertexId)

            subtreeError = 0
            for subtreeLeaf in subtreeLeaves:
                subtreeError += (
                    1 - gamma) * tree.getVertex(subtreeLeaf).getTestError()

            n = float(X.shape[0])
            d = X.shape[1]
            T = tree.getNumVertices()
            subtreeError /= n
            subtreeError += gamma * numpy.sqrt(T)

            T2 = T - len(tree.subtreeIds(vertexId)) + 1
            vertexError = (1 -
                           gamma) * tree.getVertex(vertexId).getTestError() / n
            vertexError += gamma * numpy.sqrt(T2)

            self.assertAlmostEquals((subtreeError - vertexError),
                                    tree.getVertex(vertexId).alpha)

            if tree.isLeaf(vertexId):
                self.assertEquals(tree.getVertex(vertexId).alpha, 0.0)

        #Let's check the alpha of the root node via another method
        rootId = (0, )

        T = 1
        (n, d) = X.shape
        n = float(n)
        vertexError = (1 - gamma) * numpy.sum(y != Util.mode(y)) / n
        pen = gamma * numpy.sqrt(T)
        vertexError += pen

        T = tree.getNumVertices()
        treeError = (1 - gamma) * numpy.sum(y != learner.predict(X)) / n
        pen = gamma * numpy.sqrt(T)
        treeError += pen

        alpha = treeError - vertexError
        self.assertAlmostEqual(alpha, tree.getVertex(rootId).alpha)
 def testComputeAlphas(self): 
     minSplit = 20
     maxDepth = 3
     gamma = 0.1
         
     X, y = self.X, self.y
             
     testX = X[100:, :]
     testY = y[100:]
     X = X[0:100, :]
     y = y[0:100]
      
     learner = PenaltyDecisionTree(minSplit=minSplit, maxDepth=maxDepth, gamma=gamma, pruning=False) 
     learner.learnModel(X, y)                  
     tree = learner.getTree()    
     
     rootId = (0,)
     learner.tree.getVertex(rootId).setTestInds(numpy.arange(X.shape[0]))
     learner.predict(X, y)  
     learner.computeAlphas()
     
     #See if the alpha values of the nodes are correct 
     for vertexId in tree.getAllVertexIds(): 
         subtreeLeaves = tree.leaves(vertexId)
         
         subtreeError = 0 
         for subtreeLeaf in subtreeLeaves: 
             subtreeError += (1-gamma)*tree.getVertex(subtreeLeaf).getTestError()
         
         n = float(X.shape[0])
         d = X.shape[1]
         T = tree.getNumVertices() 
         subtreeError /= n 
         subtreeError += gamma * numpy.sqrt(T)
         
         T2 = T - len(tree.subtreeIds(vertexId)) + 1 
         vertexError = (1-gamma)*tree.getVertex(vertexId).getTestError()/n
         vertexError +=  gamma * numpy.sqrt(T2)
         
         self.assertAlmostEquals((subtreeError - vertexError), tree.getVertex(vertexId).alpha)
         
         if tree.isLeaf(vertexId): 
             self.assertEquals(tree.getVertex(vertexId).alpha, 0.0)
             
     #Let's check the alpha of the root node via another method 
     rootId = (0,)
     
     T = 1 
     (n, d) = X.shape
     n = float(n)
     vertexError = (1-gamma)*numpy.sum(y != Util.mode(y))/n
     pen = gamma*numpy.sqrt(T)
     vertexError += pen 
     
     T = tree.getNumVertices() 
     treeError = (1-gamma)*numpy.sum(y != learner.predict(X))/n         
     pen = gamma*numpy.sqrt(T)
     treeError += pen 
     
     alpha = treeError - vertexError 
     self.assertAlmostEqual(alpha, tree.getVertex(rootId).alpha)